Spatial distribution of fungal endophyte genotypes in a Woollsia pungens (Ericaceae) root system

2002 ◽  
Vol 50 (5) ◽  
pp. 559 ◽  
Author(s):  
David J. Midgley ◽  
Susan M. Chambers ◽  
John W. G. Cairney

Fungal endophytes were isolated from hair roots of Woollsia pungens Cav. (Muell.) and mapped according to the root portions from which they were isolated. A total of 119 isolates was obtained and restriction fragment length polymorphism (RFLP) analysis of the internal transcribed spacer (ITS) region indicated that the isolate assemblage comprised five RFLP types. ITS sequence comparison revealed that RFLP Types I and II had 99.6–99.8% sequence identity with known ericoid mycorrhizal endophytes from Australian epacrids. The remaining three RFLP types were most similar to non-mycorrhizal ascomycetes. Eighty-five per cent of isolates obtained were of RFLP Type I and these were widespread within the root system. Inter-simple sequence repeat PCR suggested that 94% of RFLP Type I isolates were of a single genotype that was widely distributed within the root system, with the remaining five isolates each representing a different genotype. Apparent spatial dominance of the root system by a single fungal genotype may indicate limited functional diversity in the mycorrhizal endophyte assemblage.

1998 ◽  
Vol 36 (7) ◽  
pp. 1882-1885 ◽  
Author(s):  
Olivier Liguory ◽  
Felicia David ◽  
Claudine Sarfati ◽  
Francis Derouin ◽  
Jean-Michel Molina

To determine the types of Enterocytozoon bieneusistrains associated with intestinal microsporidiosis, we developed a rapid and efficient approach for typing parasites obtained from stool specimens by PCR-restriction fragment length polymorphism (PCR-RFLP). Typing was based on DNA polymorphism of the ribosomal DNA internal transcribed spacer (ITS) region of E. bieneusi. RFLPs generated with two restriction enzymes (NlaIII andFnu4HI) in PCR-amplified ITS products were used to classify strains into different lineages. This approach was successfully used to differentiate 78 strains that had been obtained from the stools of 65 patients with intestinal microsporidiosis. Among the 78 strains, we found four genetically unrelated lineages, showing the genetic diversity of E. bieneusi. Type I strains of E. bieneusi were found in a majority of the samples, accounting for 51 (78%) of the 65 microsporidiosis cases. In contrast, type II, III, and IV strains were found in only 8 (12%), 3 (5%), and 3 (5%) cases, respectively. All strains of E. bieneusi we have tested so far fall into one of four different lineages, and this study shows that human intestinal microsporidiosis is most often associated with type I strains. PCR-RFLP analysis of the ITS region of E. bieneusishould be useful for epidemiological studies.


1989 ◽  
Vol 16 (1) ◽  
pp. 147 ◽  
Author(s):  
WK Allen ◽  
WG Allaway ◽  
GC Cox ◽  
PG Valder

Dracophyllum secundum R. Br. (Epacridaceae) often possessed ericoid mycorrhizas; fungal endophytes formed coils within cells of the epidermis of hair-roots. The plant plasma membrane extended around the hyphae. In some epidermal cells of hair-roots, both plant and fungal cells retained their structural integrity, both partners showing mitochondrial, vacuolar and lipid droplet profiles, and with much of the plant cytoplasm associated with the hyphal coils. In other epidermal cells of hair-roots, fungal coils were present but cytoplasmic features of both symbionts appeared to have broken down. Some epidermal cells showed no evidence of fungal infection. These three arrangements could occur in root-cells of the same age, and are interpreted as resulting from different stages in the development and degeneration of the infection by the mycorrhizal fungus. Two structural types of fungal endophyte here found in ericoid mycorrhizas in D. secundum: one with simple septa, Woronin bodies and two-layered walls (presumed to be an Ascomycete), and another with dolipore septa with imperforate parenthesomes (presumed to be a Basidiomycete). The possibilities that the mycorrhizas may be seasonal, and that mycorrhizal status varies from place to place, are discussed.


Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 234 ◽  
Author(s):  
Eric A. Griffin ◽  
Joshua G. Harrison ◽  
Melissa K. McCormick ◽  
Karin T. Burghardt ◽  
John D. Parker

Although decades of research have typically demonstrated a positive correlation between biodiversity of primary producers and associated trophic levels, the ecological drivers of this association are poorly understood. Recent evidence suggests that the plant microbiome, or the fungi and bacteria found on and inside plant hosts, may be cryptic yet important drivers of important processes, including primary production and trophic interactions. Here, using high-throughput sequencing, we characterized foliar fungal community diversity, composition, and function from 15 broadleaved tree species (N = 545) in a recently established, large-scale temperate tree diversity experiment using over 17,000 seedlings. Specifically, we tested whether increases in tree richness and phylogenetic diversity would increase fungal endophyte diversity (the “Diversity Begets Diversity” hypothesis), as well as alter community composition (the “Tree Diversity–Endophyte Community” hypothesis) and function (the “Tree Diversity–Endophyte Function” hypothesis) at different spatial scales. We demonstrated that increasing tree richness and phylogenetic diversity decreased fungal species and functional guild richness and diversity, including pathogens, saprotrophs, and parasites, within the first three years of a forest diversity experiment. These patterns were consistent at the neighborhood and tree plot scale. Our results suggest that fungal endophytes, unlike other trophic levels (e.g., herbivores as well as epiphytic bacteria), respond negatively to increasing plant diversity.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1160-1160
Author(s):  
F. Flores ◽  
N. R. Walker

Sandbur (Cenchrus incertus Curtis) is a warm-season, annual, noxious, grassy weed native to southern North America. It is common in sandy, disturbed soils and can also be found in home lawns and sport fields where low turf density facilitates its establishment. In July 2013, after a period of frequent rainfall and heavy dew, symptoms of dollar spot-like lesions (1) were observed on sandbur plants growing in a mixed stand of turf-type and native warm-season grasses in Logan County, Oklahoma. Lesions, frequently associated with leaf sheaths, were tan and surrounded by a dark margin. Symptomatic leaves were surface sterilized and plated on potato dextrose agar amended with 10 ppm rifampicin, 250 ppm ampicillin, and 5 ppm fenpropathrin. After incubation, a fungus morphologically identical to Sclerotinia homoeocarpa Bennett was consistently isolated. The nuclear ribosomal internal transcribed spacer (ITS) region of two different isolates, SCL2 and SCL3, were amplified using primers ITS4 and ITS5 (2). The DNA products were sequenced and BLAST analyses were used to compare sequences with those in GenBank. The sequence for isolate SLC2 was 869 bp, contained a type I intron in the 18S small subunit rDNA, and was identical to accession EU123803. The ITS sequence for isolate SLC3 was 535 bp and identical to accession EU123802. Twenty-five-day-old seedlings of C. incertus were inoculated by placing 5-mm-diameter agar plugs, colonized by mycelia of each S. homoeocarpa isolate, onto two of the plants' leaves. Plugs were held in place with Parafilm. Two plants were inoculated with each isolate and sterile agar plugs were placed on two leaves of another seedling as control. Plants were incubated in a dew chamber at 20°C and a 12-h photoperiod. After 3 days of incubation, water-soaked lesions surrounded by a dark margin appeared on inoculated plants only. Fungi that were later identified as S. homoeocarpa isolates SLC2 and SLC3 by sequencing of the ITS region were re-isolated from symptomatic leaves, fulfilling Koch's postulates. To our knowledge, this is the first report of dollar spot on sandbur. References: (1) R. W. Smiley et al. Page 22 in: Compendium of Turfgrass Diseases. 3rd ed. The American Phytopathological Society, St. Paul, MN, 2005. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


1992 ◽  
Vol 70 (1) ◽  
pp. 58-72 ◽  
Author(s):  
Jeffrey G. Duckett ◽  
Roberto Ligrone

The ventral epidermal cells of the photosynthetic, surface-living gametophytes of Lycopodium cernuum, collected from moist shaded banks in Peninsular Malaysia, contain an aseptate fungus. In some cells the hyphae are thick walled and form coils encapsulated by a thin layer of host wall material. In others the fungus is thin walled and shows limited differentiation into larger trunk hyphae and arbuscules. The adjacent host cytoplasm, separated from the fungus by a granular interfacial matrix, contains numerous chloroplasts, mitochondria, and microtubules. The hyphae contact the substratum via the ventral walls of the epidermal cells and the rhizoids are free from infection. In the protocorm and root nodules, aseptate hyphae initially colonize mucilage-filled schizogenous intercellular spaces. Subsequent invasion of the host cells is associated with the development of massive overgrowths of host wall material. The fungal associations in L. cernuum share a mixture of attributes otherwise found in different angiosperm mycorrhizae and in mycotrophic relationships in liverworts. Wall ingrowths are present in both the gametophyte and sporophyte cells in the placenta of L. cernuum. The very limited development of the placenta, compared with L. appressum, certain bryophytes and ferns, the diminutive size, and early senescence of the gametophytes of L. cernuum are all linked to the presence of the protocorm. This massive absorptive organ, homologous to a foot, in terms of its position in sporophyte ontogeny, but external to the parent gametophyte, derives its nutrition partly from photosynthesis and partly from its fungal endophyte. Key words: chloroplasts, Lycopodium, mycorrhiza, pteridophytes, root nodules, symbiosis, transfer cells.


Botany ◽  
2012 ◽  
Vol 90 (9) ◽  
pp. 866-875 ◽  
Author(s):  
Deana L. Baucom ◽  
Marie Romero ◽  
Robert Belfon ◽  
Rebecca Creamer

New species of Undifilum , from locoweeds Astragalus lentiginosus Vitman and Astragalus mollissimus Torr., are described using morphological characteristics and molecular phylogenetic analyses as Undifilum fulvum Baucom & Creamer sp. nov. and Undifilum cinereum Baucom & Creamer sp. nov. Fungi were isolated from dried plants of A. lentiginosus var. araneosus , diphysus , lentiginosus , and wahweapensis collected from Arizona, Oregon, and Utah, USA, and A. mollissimus var. biglovii , earleii , and mollissimus collected from New Mexico, Oklahoma, and Texas, USA. Endophytic fungi from Astragalus locoweeds were compared to Undifilum oxytropis isolates obtained from dried plant material of Oxytropis lamberteii from New Mexico and Oxytropis sericea from Arizona, Colorado, New Mexico, Utah, and Wyoming. Extremely slow growth in vitro was observed for all, and conidia, if present, were ellipsoid with transverse septa. However, in vitro color, growth on four different media, and conidium size differed between fungi from Astragalus spp. and U. oxytropis. Neighbor-joining analyses of internal transcribed spacer (ITS) region and glyceraldehyde-3-phosphate dehydrogenase (GPD) gene sequences revealed that U. fulvum and U. cinereum formed a clade distinct from U. oxytropis. This was supported by neighbor-joining analyses of results generated from random amplified polymorphic DNA (RAPD) fragments using two different primers.


Phytotaxa ◽  
2021 ◽  
Vol 514 (3) ◽  
pp. 247-260
Author(s):  
KASUN THAMBUGALA ◽  
DINUSHANI DARANAGAMA ◽  
SAGARIKA KANNANGARA ◽  
THENUKA KODITUWAKKU

Endophytic fungi are a diverse group of microorganisms that live asymptomatically in healthy tissues of host and they have been reported from all kinds of plant tissues such as leaves, stems, roots, flowers, and fruits. In this study, fungal endophytes associated with tea leaves (Camellia sinensis) were collected from Kandy, Kegalle, and Nuwara Eliya districts in Sri Lanka and were isolated, characterized, and identified. A total of twenty endophytic fungal isolates belonging to five genera were recovered and ITS-rDNA sequence data were used to identify them. All isolated endophytic fungal strains belong to the phylum Ascomycota and the majority of these isolates were identified as Colletotrichum species. Phyllosticta capitalensis was the most commonly found fungal endophyte in tea leaves and was recorded in all three districts where the samples were collected. This is the very first investigation on fungal endophytes associated with C. sinensis in Sri Lanka based on molecular sequence data. In addition, a comprehensive account of known endophytic fungi reported worldwide on Camellia sinensis is provided.


2007 ◽  
Vol 79 (1) ◽  
pp. 111-114 ◽  
Author(s):  
RN Belfort ◽  
Veronique Nussenblatt ◽  
Luiz Rizzo ◽  
Cristina Muccioli ◽  
Claudio Silveira ◽  
...  

Toxoplasmosis is the most common cause of infectious uveitis in Brazil, with a higher frequency in the South of the country. We have collected samples from porcine tongue and diaphragm obtained in both large and small abattoirs and used molecular biological technique to determine the prevalence of infection and RFLP analysis to type the parasites. Seventeen out of 50 (34%) samples from the diaphragm and 33 out of 50 (66%) samples from the tongue demonstrated a positive PCR reaction for T. gondii and restriction analysis of four of the positive samples revealed that all had a type I genotype at SAG2. However, when other unlinked loci were analyzed, these strains had a type III genotype at markers BTUB, SAG3, and GRA6. One of the strains (8T) had a type II allele at SAG3, indicating it has a combination of alleles normally seen in the clonal lineages. Our sampling indicates a high prevalence of infection and suggests that unusual genotypes of T. gondii are found in Brazil even among domesticated pigs.


Diversity ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 378 ◽  
Author(s):  
Peter H. Tellez ◽  
Carrie L. Woods ◽  
Stephen Formel ◽  
Sunshine A. Van Bael

Vascular epiphytes contribute up to 35% of the plant diversity and foliar biomass of flowering plants. The family Bromeliaceae is a monophyletic group of plants native to the Neotropics. Epiphytic bromeliads form associations with distinct groups of organisms but their relationship with foliar fungal endophytes remain underexplored. In this study we examined the relationship of foliar fungal endophytes to host photosynthetic pathways and associated ecophysiological traits. We sampled the fungal endophyte communities of 67 host individuals in six epiphytic bromeliad species differing in C3 and crassulacean acid metabolism (CAM) photosynthetic pathways. We tested whether endophyte assemblages were associated with ecophysiological leaf traits related to host photosynthetic pathways. Our results indicate that (1) C3 and CAM bromeliads host dissimilar endophyte assemblages, (2) endophyte communities in C3 bromeliads are characterized by variable relative abundances of fungal orders; conversely, CAM associated endophyte communities were characterized by consistent relative abundances of fungal orders, and (3) endophyte communities in bromeliads are distributed along a continuum of leaf toughness and leaf water content. Taken together, our study suggests that host physiology and associated ecophysiological traits of epiphytic bromeliads may represent biotic filters for communities of fungal endophytes in the tropics.


Zootaxa ◽  
2004 ◽  
Vol 460 (1) ◽  
pp. 1 ◽  
Author(s):  
ORESTE TRIGGIANI ◽  
ZDENEK MRÁ»EK ◽  
ALEX REID

Steinernema apuliae sp. n. has been found in soil samples collected along a saltpan border habitat in southern Italy characterized by a salted silt soil. This species belongs to the long-IJ nematode group represented by Steinernema glaseri (Steiner, 1929) and Steinernema arenarium (Artyukhovsky, 1967) among others. However, it differs from these taxa in some morphometric values such as V%, H%. Females possess asymmetrical, oblique slit vulva, slant vagina and small flap in the vulval opening. These characteristics are more distinct in second generation females which is different from most other steinernematids; the vulva position is behind the mid-body about 57% to 61% of the body length. First-generation females have a conical-like tip bearing 2 to 3 papilla-like protuberances. Male mucron is absent in both generations. Lightly brown spicules have bluntly pointed tip and elongated manubrium. Third-stage infective juveniles are on average over 1000 m long; the position of the excretory pore is posterior (D% 66) and the hyaline layer is less than half the tail length (H% 41 42). Lateral fields are formed by 8 equally distributed ridges. S. apuliae differs from S. glaseri and S. arenarium and is separated by PCR-RFLP analysis of the ITS region. There were no positive cross-breedings among these species.


Sign in / Sign up

Export Citation Format

Share Document