Development and utilisation of conserved-intron scanning marker in sugarcane

2011 ◽  
Vol 59 (1) ◽  
pp. 38 ◽  
Author(s):  
M. Suhail Khan ◽  
Sonia Yadav ◽  
Sangeeta Srivastava ◽  
M. Swapna ◽  
A. Chandra ◽  
...  

Genetic dissection of economic traits in sugarcane requires sufficiently informative molecular markers that are currently lacking in this highly valued crop. Through comparative analysis of publicly available expressed-sequence data of sugarcane, sorghum and barley, and the whole rice genome-sequence survey, novel functional markers based on conserved-intron scanning primers (CISP) were developed and evaluated in different accessions across various taxonomic ranks of sugarcane. Polymorphism was moderate (55.2%), whereas 94.7% of the markers developed amplified fragments in selected genotypes. Mean polymorphism information content value was 0.582 (range 0.320–0.715), which was comparable to that with genic microsatellite markers (0.52) but lower than that with EST-SSR (0.73). Genetic-similarity coefficient ranged from 0.39 to 0.95, indicating variable levels of divergence depending on the taxonomic rank assessed. Cluster analysis revealed that the genotypes grouped in accordance with the taxonomical classification of sugarcane, with a relatively good support from a Mantel’s test (r = 0.847) and a moderate bootstrap value (65–89%). The CISP markers reported in the present study have potential utility for genetic-diversity analysis and application in sugarcane-breeding programs.

2021 ◽  
Vol 20 (7) ◽  
pp. 911-927
Author(s):  
Lucia Muggia ◽  
Yu Quan ◽  
Cécile Gueidan ◽  
Abdullah M. S. Al-Hatmi ◽  
Martin Grube ◽  
...  

AbstractLichen thalli provide a long-lived and stable habitat for colonization by a wide range of microorganisms. Increased interest in these lichen-associated microbial communities has revealed an impressive diversity of fungi, including several novel lineages which still await formal taxonomic recognition. Among these, members of the Eurotiomycetes and Dothideomycetes usually occur asymptomatically in the lichen thalli, even if they share ancestry with fungi that may be parasitic on their host. Mycelia of the isolates are characterized by melanized cell walls and the fungi display exclusively asexual propagation. Their taxonomic placement requires, therefore, the use of DNA sequence data. Here, we consider recently published sequence data from lichen-associated fungi and characterize and formally describe two new, individually monophyletic lineages at family, genus, and species levels. The Pleostigmataceae fam. nov. and Melanina gen. nov. both comprise rock-inhabiting fungi that associate with epilithic, crust-forming lichens in subalpine habitats. The phylogenetic placement and the monophyly of Pleostigmataceae lack statistical support, but the family was resolved as sister to the order Verrucariales. This family comprises the species Pleostigma alpinum sp. nov., P. frigidum sp. nov., P. jungermannicola, and P. lichenophilum sp. nov. The placement of the genus Melanina is supported as a lineage within the Chaetothyriales. To date, this genus comprises the single species M. gunde-cimermaniae sp. nov. and forms a sister group to a large lineage including Herpotrichiellaceae, Chaetothyriaceae, Cyphellophoraceae, and Trichomeriaceae. The new phylogenetic analysis of the subclass Chaetothyiomycetidae provides new insight into genus and family level delimitation and classification of this ecologically diverse group of fungi.


Author(s):  
Viola Kurm ◽  
Ilse Houwers ◽  
Claudia E. Coipan ◽  
Peter Bonants ◽  
Cees Waalwijk ◽  
...  

AbstractIdentification and classification of members of the Ralstonia solanacearum species complex (RSSC) is challenging due to the heterogeneity of this complex. Whole genome sequence data of 225 strains were used to classify strains based on average nucleotide identity (ANI) and multilocus sequence analysis (MLSA). Based on the ANI score (>95%), 191 out of 192(99.5%) RSSC strains could be grouped into the three species R. solanacearum, R. pseudosolanacearum, and R. syzygii, and into the four phylotypes within the RSSC (I,II, III, and IV). R. solanacearum phylotype II could be split in two groups (IIA and IIB), from which IIB clustered in three subgroups (IIBa, IIBb and IIBc). This division by ANI was in accordance with MLSA. The IIB subgroups found by ANI and MLSA also differed in the number of SNPs in the primer and probe sites of various assays. An in-silico analysis of eight TaqMan and 11 conventional PCR assays was performed using the whole genome sequences. Based on this analysis several cases of potential false positives or false negatives can be expected upon the use of these assays for their intended target organisms. Two TaqMan assays and two PCR assays targeting the 16S rDNA sequence should be able to detect all phylotypes of the RSSC. We conclude that the increasing availability of whole genome sequences is not only useful for classification of strains, but also shows potential for selection and evaluation of clade specific nucleic acid-based amplification methods within the RSSC.


2018 ◽  
Vol 7 (3) ◽  
pp. 39-43
Author(s):  
Satyaveer Singh ◽  
Mahendra Singh Aswal

Web usage mining is used to find out fascinating consumer navigation patterns which can be applied to a lot of real-world problems, such as enriching websites or pages, generating newly topic or product recommendations and consumer behavior studies, etc. In this paper, an attempt has been made to provide a taxonomical classification of web usage mining applications with two levels of hierarchy. Further, the ontology for various categories of the web usage mining applications has been developed and to prove the completeness of proposed taxonomy, a rigorous case study has been performed. The comparative study with other existing classifications of web usage mining applications has also been performed.


Author(s):  
M. Belaganahalli ◽  
S. Maan ◽  
P. P.C. Mertens

Viruses that are normally safely contained within their host spe­cies can emerge due to intense livestock farming, trade, travel, climate change and encroachment of human activities into new environments. The unexpected emergence of bluetongue virus (BTV), the prototype species of the genus Orbivirus, in economi­cally important livestock species (sheep and cattle) across the whole of Europe (since 1998), indicates that other orbiviruses represent a potential further threat to animal and human popula­tions in Europe and elsewhere. The genus Orbivirus is the largest within the family Reoviridae, containing 22 virus species, as well as 14 unclassified orbiviruses, some of which may repre­sent additional or novel species. The orbiviruses are transmitted primarily by arthropod vectors (e.g. Culicoides, mosquitoes or ticks).  Viral genome sequence data provide a basis for virus taxonomy and diagnostic test development, and make it possible to address fundamental questions concerning virus biology, pathogenesis, virulence and evolution, that can be further explored in mutation and reverse genetics studies. Genome sequences also provide criteria for the classification of novel isolates within individual Orbivirus species, as well as the identification of different sero­types, topotypes, reassortants and even closely related but dis­tinct virus lineages.  Full-length genome characterization of Tilligerry virus (TILV), a member of the Eubenangee virus species, and Mitchell River virus (MRV), a member of the Warrego virus species, have revealed highly conserved 5’ and 3’ terminal hexanucleotide sequences. Phylogenetic analyses of orbivirus T2 ‘sub-core-shell’ protein sequences reinforce the hypothesis that this protein is an important evolutionary marker for these viruses. The T2 protein shows high levels of amino acid (AA) sequence identity (> 91%) within a single Orbivirus species / serogroup, which can be used for species identification. The T2-protein gene has therefore been given priority in sequencing studies. The T2 protein of TILV is closely related to that of Eubenangee virus (~91% identity), con­firming that they are both members of the same Eubenangee virus species. Although TILV is reported to be related to BTV in serological assays, the TILV T2 protein shows only 68-70% AA identity to BTV. This supports its current classification within a different serogroup (Eubenangee).  Warrego virus and MRV are currently classified as two distinct members (different serotypes) within the Warrego virus species. However, they show only about 79% AA identity in their T2 pro­tein (based on partial sequences). It is therefore considered likely that they could be reclassified as members of distinct Orbivirus species. The taxonomic classification of MRV will be reviewed after generating full length sequences for the entire genomes of both viruses. The taxonomic status of each of these viruses will also be tested further by co-infections and attempts to create reassortants between them (only viruses belonging to the same species can reassort their genome segments). TILV and MRV are the first viruses from their respective serogroups / virus species to be genetically fully characterized, and will provide a basis for the further characterization / identification of additional viruses within each group / species. These data will assist in the devel­opment of specific diagnostic assays and potentially in control of emerging diseases. The sequences generated will also help to evaluate current diagnostic [reverse transcriptase - polymerase chain reaction (RT-PCR)] tests for BTV, African horse sickness virus, epizootic haemorrhagic disease virus, etc., in silico, by identifying any possibility of cross reactivity.


2019 ◽  
Author(s):  
Mathias Kuhring ◽  
Joerg Doellinger ◽  
Andreas Nitsche ◽  
Thilo Muth ◽  
Bernhard Y. Renard

AbstractUntargeted accurate strain-level classification of a priori unidentified organisms using tandem mass spectrometry is a challenging task. Reference databases often lack taxonomic depth, limiting peptide assignments to the species level. However, the extension with detailed strain information increases runtime and decreases statistical power. In addition, larger databases contain a higher number of similar proteomes.We present TaxIt, an iterative workflow to address the increasing search space required for MS/MS-based strain-level classification of samples with unknown taxonomic origin. TaxIt first applies reference sequence data for initial identification of species candidates, followed by automated acquisition of relevant strain sequences for low level classification. Furthermore, proteome similarities resulting in ambiguous taxonomic assignments are addressed with an abundance weighting strategy to improve candidate confidence.We apply our iterative workflow on several samples of bacterial and viral origin. In comparison to non-iterative approaches using unique peptides or advanced abundance correction, TaxIt identifies microbial strains correctly in all examples presented (with one tie), thereby demonstrating the potential for untargeted and deeper taxonomic classification. TaxIt makes extensive use of public, unrestricted and continuously growing sequence resources such as the NCBI databases and is available under open-source license at https://gitlab.com/rki_bioinformatics.


2020 ◽  
Author(s):  
Andrew J. Page ◽  
Nabil-Fareed Alikhan ◽  
Michael Strinden ◽  
Thanh Le Viet ◽  
Timofey Skvortsov

AbstractSpoligotyping of Mycobacterium tuberculosis provides a subspecies classification of this major human pathogen. Spoligotypes can be predicted from short read genome sequencing data; however, no methods exist for long read sequence data such as from Nanopore or PacBio. We present a novel software package Galru, which can rapidly detect the spoligotype of a Mycobacterium tuberculosis sample from as little as a single uncorrected long read. It allows for near real-time spoligotyping from long read data as it is being sequenced, giving rapid sample typing. We compare it to the existing state of the art software and find it performs identically to the results obtained from short read sequencing data. Galru is freely available from https://github.com/quadram-institute-bioscience/galru under the GPLv3 open source licence.


Mycologia ◽  
2003 ◽  
Vol 95 (6) ◽  
pp. 1204 ◽  
Author(s):  
Laura Guzman-Davalos ◽  
Gregory M. Mueller ◽  
Joaquin Cifuentes ◽  
Andrew N. Miller ◽  
Anne Santerre

Zootaxa ◽  
2021 ◽  
Vol 4920 (2) ◽  
pp. 151-199
Author(s):  
HIROSHI KAJIHARA

The nemertean order Monostilifera consists of 594 species in 127 genera and is distributed worldwide. Within the Monostilifera, two suborders have been recognized, Cratenemertea and Eumonostilifera. Within the latter, two, unranked clade names, Oerstediina and Amphiporina, were recently proposed without formal taxonomic definition. In this article, I give morphological circumscriptions and clade definitions for Cratenemertea, Eumonostilifera, Oerstediina, Plectonemertidae, Oerstediidae, and Amphiporina. Oerstediina and Amphiporina are placed on the Linnaean rank of infraorder. Constituent genera and species for each higher taxon are tabulated. The genus Amphiporella Friedrich, 1939 is herein replaced with Germanemertes nom. nov. to avoid homonymy with the Carboniferous fossil bryozoan genus Amphiporella Girty, 1910. Loxorrhochmidae Diesing, 1862 is declared a nomen oblitum relative to Tetrastemmatidae Hubrecht, 1897, a nomen protectum under Article 23.9 of the International Code of Zoological Nomenclature. There remain 308 species of eumonostiliferans whose infraorder affiliation is uncertain due to the lack of information on vascular morphology and molecular sequence data. The suborder affiliation of the two species Cinclidonemertes mooreae Crandall, 2010 and Verrillianemertes schultzei Senz, 2001 is left uncertain.  


Zootaxa ◽  
2017 ◽  
Vol 4353 (3) ◽  
pp. 401 ◽  
Author(s):  
F. GARY STILES ◽  
J. V. JR. REMSEN ◽  
JIMMY A. MCGUIRE

The generic nomenclature of the hummingbirds is unusually complicated. McGuire et al.’s (2014) recent phylogeny of the Trochilidae based on DNA sequence data has greatly clarified relationships within the family but conflicts strongly with the traditional classification of the family at the genus level, especially that of the largest and most recently derived clade, the Trochilini or “emeralds”. We recently presented a historical review of this classification and the generic modifications required by the Code of the International Commission on Zoological Nomenclature. Herein we present a revised generic classification of the Trochilini based upon McGuire et al.’s genetic data, while producing diagnosable generic groupings and preserving nomenclatural stability insofar as possible. However, this generic rearrangement has necessitated the resurrection of nine generic names currently considered synonyms, the synonymization of seven currently recognized genera and the creation of one new genus. The generic changes we recommend to the classification are drastic, and we summarize these in tabular form in comparison with the three most recent classifications of the Trochilini. Where appropriate, we outline alternatives to our proposed arrangement. The classification treats 110 species in 35 genera, including two species that remain unplaced for lack of genetic samples. 


Sign in / Sign up

Export Citation Format

Share Document