Deep history of wildfire in Australia

2016 ◽  
Vol 64 (8) ◽  
pp. 557 ◽  
Author(s):  
Robert S. Hill ◽  
Gregory J. Jordan

Australian plant species vary markedly in their fire responses, and the evolutionary histories of the diverse range of traits that lead to fire tolerance and fire dependence almost certainly involves both exaptation and traits that evolved directly in response to fire. The hypothesis that very long-term nutrient poverty in Australian soils led to intense fires explains many of the unusual responses to fire by Australian species, as does near global distribution of evidence for fire during the Cretaceous, possibly driven by high atmospheric oxygen concentration. Recent descriptions of leaf fragments from a Late Cretaceous locality in central Australia have provided the first fossil evidence for ancient and possibly ancestral fire ecology in modern fire-dependent Australian clades, as suggested by some phylogenetic studies. The drying of the Australian climate in the Neogene allowed the rise to dominance of taxa that had their origin in the Late Cretaceous, but had not been prominent in the rainforest-dominated Paleogene. The Neogene climatic evolution meant that fire became an important feature of that environment and fire frequency and intensity began to grow to high levels, and many fire adaptations evolved. However, many plant species were already in place to take advantage of this new fire regime, and even though the original drivers for fire may have changed (possibly from high atmospheric oxygen concentrations, to long, hot, dry periods at different times in different parts of the continent), the adaptations that these species had for fire tolerance meant they could become prominent over much of the Australian continent by the time human colonisation began.

Author(s):  
Cathy Whitlock

The primary research objective has been to study the vegetational history of Yellowstone and its sensitivity to changes in climate and fire frequency. To establish a sequence of vegetational changes, a network of pollen records spanning the last 14,000 years has been studied from different types of vegetation within the Park. The relationship between modern pollen rain, modern vegetation and present­day climate in the northern Rocky Mountains has been the basis for interpreting past vegetation and climate from the fossil records. Changes in fire regime during the past 14,000 years have been inferred from sedimentary charcoal and other fire proxy in lake sediments. Calibration of the fire signal is based on a study that measures the input of charcoal into lakes following the 1988 fires in Yellowstone.


2007 ◽  
Vol 85 (3) ◽  
pp. 263-272 ◽  
Author(s):  
Claude Lavoie ◽  
Stéphanie Pellerin

In this study, we reconstructed the long-term fire history of a set of ombrotrophic peatlands (bogs) located in a temperate region of southern Quebec (Bas-Saint-Laurent). Past and recent fire-free intervals (time interval between two consecutive fires) were compared using macrofossil analyses. During most of the Holocene epoch, fires were relatively rare events in bogs of the Bas-Saint-Laurent region. The fire-free intervals were approximately ten times longer (all sites considered) before the beginning of agricultural activities in the region (1800 AD) than after. This strongly suggests an anthropogenic influence on the fire regime prevailing in the bogs over the last 200 years. However, the shortening of the fire-free intervals was mainly the result of the ignition of one or two fires in almost every site during a relatively short period (200 years), rather than a higher fire frequency in each of the bogs. In some cases, fires had an influence on the vegetation structure of bogs, but it is more likely that a combination of several disturbances (fire, drainage, and drier than average summers) favoured the establishment of dense stands of pine and spruce, a forest expansion phenomenon that is now widespread in temperate bogs.


Author(s):  
Donald Eugene Canfield

This chapter discusses the modeling of the history of atmospheric oxygen. The most recently deposited sediments will also be the most prone to weathering through processes like sea-level change or uplift of the land. Thus, through rapid recycling, high rates of oxygen production through the burial of organic-rich sediments will quickly lead to high rates of oxygen consumption through the exposure of these organic-rich sediments to weathering. From a modeling perspective, rapid recycling helps to dampen oxygen changes. This is important because the fluxes of oxygen through the atmosphere during organic carbon and pyrite burial, and by weathering, are huge compared to the relatively small amounts of oxygen in the atmosphere. Thus, all of the oxygen in the present atmosphere is cycled through geologic processes of oxygen liberation (organic carbon and pyrite burial) and consumption (weathering) on a time scale of about 2 to 3 million years.


2020 ◽  
Vol 13 (12) ◽  
pp. e236357
Author(s):  
Mary Sessums ◽  
Siva Yarrarapu ◽  
Pramod K Guru ◽  
Devang K Sanghavi

Immune checkpoint inhibitors have revolutionised cancer therapy in the past decade. Although they have been indicated to treat a diverse range of malignant neoplasms, they are also associated with various immune-related adverse effects. We report the case of a 74-year-old man with a history of urothelial carcinoma who had atezolizumab-induced myocarditis and myositis resulting in acute hypercapnic respiratory failure, despite the discontinuation of atezolizumab and aggressive treatment with corticosteroids. This case highlights the importance of a multidisciplinary approach for early diagnosis and treatment of immune-related adverse events. Physicians must be aware of the risks associated with immune checkpoint inhibitors and have a basic knowledge regarding their management.


Fire Ecology ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Jan W. van Wagtendonk ◽  
Peggy E. Moore ◽  
Julie L. Yee ◽  
James A. Lutz

Abstract Background The effects of climate on plant species ranges are well appreciated, but the effects of other processes, such as fire, on plant species distribution are less well understood. We used a dataset of 561 plots 0.1 ha in size located throughout Yosemite National Park, in the Sierra Nevada of California, USA, to determine the joint effects of fire and climate on woody plant species. We analyzed the effect of climate (annual actual evapotranspiration [AET], climatic water deficit [Deficit]) and fire characteristics (occurrence [BURN] for all plots, fire return interval departure [FRID] for unburned plots, and severity of the most severe fire [dNBR]) on the distribution of woody plant species. Results Of 43 species that were present on at least two plots, 38 species occurred on five or more plots. Of those 38 species, models for the distribution of 13 species (34%) were significantly improved by including the variable for fire occurrence (BURN). Models for the distribution of 10 species (26%) were significantly improved by including FRID, and two species (5%) were improved by including dNBR. Species for which distribution models were improved by inclusion of fire variables included some of the most areally extensive woody plants. Species and ecological zones were aligned along an AET-Deficit gradient from cool and moist to hot and dry conditions. Conclusions In fire-frequent ecosystems, such as those in most of western North America, species distribution models were improved by including variables related to fire. Models for changing species distributions would also be improved by considering potential changes to the fire regime.


2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


2005 ◽  
Vol 18 (4) ◽  
pp. 608-637 ◽  
Author(s):  
Goro Kuno ◽  
Gwong-Jen J. Chang

SUMMARY Among animal viruses, arboviruses are unique in that they depend on arthropod vectors for transmission. Field research and laboratory investigations related to the three components of this unique mode of transmission, virus, vector, and vertebrate host, have produced an enormous amount of valuable information that may be found in numerous publications. However, despite many reviews on specific viruses, diseases, or interests, a systematic approach to organizing the available information on all facets of biological transmission and then to interpret it in the context of the evolutionary process has not been attempted before. Such an attempt in this review clearly demonstrates tremendous progress made worldwide to characterize the viruses, to comprehend disease transmission and pathogenesis, and to understand the biology of vectors and their role in transmission. The rapid progress in molecular biologic techniques also helped resolve many virologic puzzles and yielded highly valuable data hitherto unavailable, such as characterization of virus receptors, the genetic basis of vertebrate resistance to viral infection, and phylogenetic evidence of the history of host range shifts in arboviruses. However, glaring gaps in knowledge of many critical subjects, such as the mechanism of viral persistence and the existence of vertebrate reservoirs, are still evident. Furthermore, with the accumulated data, new questions were raised, such as evolutionary directions of virus virulence and of host range. Although many fundamental questions on the evolution of this unique mode of transmission remained unresolved in the absence of a fossil record, available observations for arboviruses and the information derived from studies in other fields of the biological sciences suggested convergent evolution as a plausible process. Overall, discussion of the diverse range of theories proposed and observations made by many investigators was found to be highly valuable for sorting out the possible mechanism(s) of the emergence of arboviral diseases.


2013 ◽  
Vol 151 (1) ◽  
pp. 183-198 ◽  
Author(s):  
BENJAMIN P. KEAR ◽  
BORIS EKRT ◽  
JOSEF PROKOP ◽  
GEORGIOS L. GEORGALIS

AbstractDespite being known for over 155 years, the Late Cretaceous marine amniotes of the Bohemian Cretaceous Basin in the Czech Republic have received little recent attention. These fossils are however significant because they record a diverse range of taxa from an incompletely known geological interval: the Turonian. The presently identifiable remains include isolated bones and teeth, together with a few disarticulated skeletons. The most productive stratigraphical unit is the Lower–Middle Turonian Bílá Hora Formation, which has yielded small dermochelyoid sea turtles, a possible polycotylid plesiosaur and elements compatible with the giant predatory pliosauromorphPolyptychodon. A huge protostegid, together with an enigmatic cheloniid-like turtle,Polyptychodon-like dentigerous components, an elasmosaurid and a tethysaurine mosasauroid have also been found in strata corresponding to the Middle–Upper Turonian Jizera Formation and Upper Turonian – Coniacian Teplice Formation. The compositional character of the Bohemian Cretaceous Basin fauna is compatible with coeval assemblages from elsewhere along the peri-Tethyan shelf of Europe, and incorporates the globally terminal Middle–Upper Turonian occurrence of pliosauromorph megacarnivores, which were seemingly replaced by mosasauroids later in the Cretaceous.


2021 ◽  
pp. SP495-2021-72
Author(s):  
Domenico Chiarella ◽  
Daniel Joel

AbstractDeep-marine gravity-driven deposits represent one of the more investigated depositional systems due to their potential interest as target for exploration and carbon capture and storage activities, as well as an important record of the depositional history of a basin through time. Although the Halten Terrace (Norwegian Sea) is one of the main successful exploration areas, we still have poor understanding of the post-rift Cretaceous interval. Here, 3D seismic reflection and borehole data are integrated to investigate the stratigraphic distribution and sedimentological characteristics of the Cenomanian-Turonian intra Lange Sandstones in the Gimsan Basin and Grinda Graben. The Lange Formation records the deposition in a deep-marine environment of a thousand meter thick shale unit punctuated by tens of meters thick gravity-driven coarse-grained sandstone intervals sourced from the Norwegian mainland. The presence of gravity-driven deposits and the deep-marine setting is supported by seismic interpretation, architectural elements and the facies analysis of cored material acquired within the studied stratigraphic interval. Borehole data indicate the presence of both turbidites and hybrid-event beds rich in mud content. The results of this study have implications for the understanding of the distribution and reservoir potentiality of the Late Cretaceous Lange Formation in the Halten Terrace.


2021 ◽  
Vol 50 (1) ◽  
pp. 9-22
Author(s):  
Bruce Grant

If our knowledge of shamanism has been so abidingly partial, so impressively uneven, so deeply varied by history, and so enduringly skeptical for so long, how has its study come to occupy such pride of place in the anthropological canon? One answer comes in a history of social relations where shamans both are cast as translators of the unseen and are themselves sites of anxiety in a very real world, one of encounters across lines of gender, class, and colonial incursions often defined by race. This article contends that as anthropologists have cultivated a long and growing library of shamanic practice, many appear to have found, in a globally diverse range of spirit practitioners, translators across social worlds who are not unlike themselves, suggesting that in the shaman we find a remarkable history of anthropology.


Sign in / Sign up

Export Citation Format

Share Document