Mechanisms Controlling Dormancy in the Arid Zone Grass Aristida contorta. II. Anatomy of the Hull

1974 ◽  
Vol 22 (4) ◽  
pp. 647 ◽  
Author(s):  
JJ Mott ◽  
PW Tynan

The anatomy of the hull directly over the embryo was examined by light and electron microscopy in long-term dormant and non-dormant grains of A. contorta. A lipid-containing layer was noted, covering the surface of the inner epidermis of the hull, and examination by scanning electron microscopy showed that although the layer was intact in all dormant grain examined, it was fractured in non-dormant grain. A definitive statement on the function of these cracks is not possible, but they appear to be an anatomical change leading to increased gas permeability of the hull of non-dormant grains.

Phytotaxa ◽  
2018 ◽  
Vol 358 (3) ◽  
pp. 265 ◽  
Author(s):  
EDUARDO A. TUSSET ◽  
PRISCILA I. TREMARIN ◽  
THELMA A.V. LUDWIG

The morphology of three Stauroneis species from midwestern karstic Brazilian formations was illustrated under light and electron microscopy. Two new Stauroneis are described and compared with similar species in the genus. Stauroneis cavalcantei Tremarin, Tusset & T. Ludwig is characterized by lanceolate valves with subtly protracted apices, and S. karstica Tusset, Tremarin & T. Ludwig by rhombic-lanceolate valves with attenuate to acutely-rounded apices, reduced pseudosepta, bow-tie-shaped stauros, and areolae depressed along prominent longitudinal-oriented apical ribs. Stauroneis alabamae is a scarcely known species and unprecedented scanning electron microscopy illustrations are provided.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1550 ◽  
Author(s):  
So Young Kim ◽  
Younghyun Cho ◽  
Sang Wook Kang

In this study, we investigated a poly(ether-block-amide)-5513 (PEBAX-5513)/AgBF4/1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) composite membrane, which is expected to have a high stabilizing effect on the Ag+ ions functioning as olefin carriers in the amide group. Poly(ethylene oxide) (PEO) only consists of ether regions, whereas the PEBAX-5513 copolymer contains both ether and amide regions. However, given the brittle nature of the amide, the penetration of BMIMBF4 remains challenging. The nanoparticles did not stabilize after their formation in the long-term test, thereby resulting in a poor performance compared to previous experiments using PEO as the polymer (selectivity 3; permeance 12.3 GPU). The properties of the functional groups in the polymers were assessed using Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis, which confirmed that the properties endowed during the production of the film using the ionic liquid can impact the performance.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dorothea Pinotsi ◽  
Simona Rodighiero ◽  
Silvia Campioni ◽  
Gabor Csucs

Abstract A number of new Correlative Light and Electron Microscopy approaches have been developed over the past years, offering the opportunity to combine the specificity and bio-compatibility of light microscopy with the high resolution achieved in electron microscopy. More recently, these approaches have taken one step further and also super-resolution light microscopy was combined with transmission or scanning electron microscopy. This combination usually requires moving the specimen between different imaging systems, an expensive set-up and relatively complicated imaging workflows. Here we present a way to overcome these difficulties by exploiting a commercially available wide-field fluorescence microscope integrated in the specimen chamber of a Scanning Electron Microscope (SEM) to perform correlative LM/EM studies. Super-resolution light microscopy was achieved by using a recently developed algorithm - the Super-Resolution Radial Fluctuations (SRRF) - to improve the resolution of diffraction limited fluorescent images. With this combination of hardware/software it is possible to obtain correlative super-resolution light and scanning electron microscopy images in an easy and fast way. The imaging workflow is described and demonstrated on fluorescently labelled amyloid fibrils, fibrillar protein aggregates linked to the onset of multiple neurodegenerative diseases, revealing information about their polymorphism.


2012 ◽  
Vol 9 (75) ◽  
pp. 2551-2562 ◽  
Author(s):  
Marjorie S. Austero ◽  
Amalie E. Donius ◽  
Ulrike G. K. Wegst ◽  
Caroline L. Schauer

Chitosan (CS), the deacetylated form of chitin, the second most abundant, natural polysaccharide, is attractive for applications in the biomedical field because of its biocompatibility and resorption rates, which are higher than chitin. Crosslinking improves chemical and mechanical stability of CS. Here, we report the successful utilization of a new set of crosslinkers for electrospun CS. Genipin, hexamethylene-1,6-diaminocarboxysulphonate (HDACS) and epichlorohydrin (ECH) have not been previously explored for crosslinking of electrospun CS. In this first part of a two-part publication, we report the morphology, determined by field emission scanning electron microscopy (FESEM), and chemical interactions, determined by Fourier transform infrared microscopy, respectively. FESEM revealed that CS could successfully be electrospun from trifluoroacetic acid with genipin, HDACS and ECH added to the solution. Diameters were 267 ± 199 nm, 644 ± 359 nm and 896 ± 435 nm for CS–genipin, CS–HDACS and CS–ECH, respectively. Short- (15 min) and long-term (72 h) dissolution tests (T 600 ) were performed in acidic, neutral and basic pHs (3, 7 and 12). Post-spinning activation by heat and base to enhance crosslinking of CS–HDACS and CS–ECH decreased the fibre diameters and improved the stability. In the second part of this publication, we report the mechanical properties of the fibres.


1979 ◽  
Vol 83 (1) ◽  
pp. 260-265 ◽  
Author(s):  
M Chinkers ◽  
J A McKanna ◽  
S Cohen

The morphological effects of epidermal growth factor (EGF) on human carcinoma cells A-431 have been examined by scanning electron microscopy. These flat polygonal cells normally exhibit only small membrane folds, but show extensive ruffling and extension of filopodia within 5 min of exposure to EGF at 37 degrees C. This ruffling activity is transient, subsiding within another 5--15 min, but several other changes in surface morphology follow. Within the first hour of exposure to the hormone, the cell surface becomes exceedingly smooth and the nuclei seem to protrude above the plane of the otherwise thin monolayer, giving the cells a "fried egg" appearance. Cells at the edges of colonies gradually retract from the substrate, leading to reorganization, by 12 h, of the monolayer into multilayered colonies. EGF thus induces both rapid and long-term alterations in the morphology of these epidermoid cells.


2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
Kris N. J. Stevens ◽  
Yvette B. J. Aldenhoff ◽  
Frederik H. van der Veen ◽  
Jos G. Maessen ◽  
Leo H. Koole

Extended use of cardiopulmonary bypass (CPB) systems is often hampered by thrombus formation and infection. Part of these problems relates to imperfect hemocompatibility of the CPB circuitry. The engineering of biomaterial surfaces with genuine long-term hemocompatibility is essentially virgin territory in biomaterials science. For example, most experiments with the well-known Chandler loop model, for evaluation of blood-biomaterial interactions under flow, have been described for a maximum duration of 2 hours only. This study reports a systematic evaluation of two commercial CPB tubings, each with a hemocompatible coating, and one uncoated control. The experiments comprised (i) testing over 5 hours under flow, with human whole blood from 4 different donors; (ii) measurement of essential blood parameters of hemocompatibility; (iii) analysis of the luminal surfaces by scanning electron microscopy and thrombin generation time measurements. The dataset indicated differences in hemocompatibility of the tubings. Furthermore, it appeared that discrimination between biomaterial coatings can be made only after several hours of blood-biomaterial contact. Platelet counting, myeloperoxidase quantification, and scanning electron microscopy proved to be the most useful methods. These findings are believed to be relevant with respect to the bioengineering of extracorporeal devices that should function in contact with blood for extended time.


2016 ◽  
Vol 130 (1) ◽  
pp. 278-291 ◽  
Author(s):  
Matthew R. G. Russell ◽  
Thomas R. Lerner ◽  
Jemima J. Burden ◽  
David O. Nkwe ◽  
Annegret Pelchen-Matthews ◽  
...  

2018 ◽  
Vol 4 (21) ◽  
pp. 335-343
Author(s):  
Monika Gwoździk

The paper presents results of studies of steel and the oxide layer formed during a long-term operation (t=130,000h) on 13CrMo4-5 steel at an elevated temperature (T=455°C). The oxide layer was studied on a surface and a cross-section at the inner site of the pipe (in the flowing medium – steam side). The paper contains results of studies such as: light microscopy, scanning electron microscopy, X-ray phase analysis.


2013 ◽  
Vol 11 (2) ◽  
Author(s):  
Gianfranco DiGiuseppe ◽  
Li Sun

This paper reports a new study where relatively long-term tests of about a 1000 h are performed on several planar anode-supported solid oxide fuel cells. The cell electrochemical behaviors are studied by using voltage-current density measurement, electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The cell total polarization obtained from electrochemical impedance spectroscopy results is shown to be consistent with the area-specific resistance calculated from the voltage-current density curve over the course of the test. In addition, a four-constant phase element model is used to analyze the cell components resistances at different intervals over the lifetime of the test. Scanning electron microscopy and energy-dispersive X-ray spectroscopy are used postmortem to determine if any damages occurred to the cells and to determine if any change in composition occurred to the lanthanum strontium cobalt ferrite cathode. This study shows that the tested cells remain stable with a relatively small increase in the cell total polarization but with no increase in ohmic resistance.


Sign in / Sign up

Export Citation Format

Share Document