A Novel One-Pot Procedure for the Fast and Efficient Conversion of RAFT Polymers into Hydroxy-Functional Polymers

2009 ◽  
Vol 62 (8) ◽  
pp. 806 ◽  
Author(s):  
Till Gruendling ◽  
Mathias Dietrich ◽  
Christopher Barner-Kowollik

We report on the successful quantitative transformation of methacrylate and acrylate-type polymers prepared by reversible addition–fragmentation chain transfer (RAFT) polymerization carrying a dithioester-end-group into hydroxy-functional polymers. The simple reaction procedure involves stirring a solution of the dithioester-capped polymer and an azo-initiator in tetrahydrofuran at elevated temperatures (T = 60°C) in the presence of air. This reaction quantitatively yields hydroperoxide functionalities that can be efficiently reduced to hydroxy groups in a one-pot procedure using triphenylphosphine. Size exclusion chromatography–electrospray mass spectrometry was employed to monitor the progress of the reaction. The new backbone-linked hydroxy group provides a versatile anchor for chemical end-group conversions and conjugation reactions with prepared RAFT polymers, which alleviates problems with the rather limited ability of the dithioester-end-group to undergo non-radical transformations.

2010 ◽  
Vol 63 (8) ◽  
pp. 1219 ◽  
Author(s):  
Marianne Gaborieau ◽  
Tim J. Causon ◽  
Yohann Guillaneuf ◽  
Emily F. Hilder ◽  
Patrice Castignolles

Oligo(acrylic acid) efficiently stabilizes polymeric particles, especially particles produced by reversible addition–fragmentation chain transfer (RAFT) (as hydrophilic block of an amphiphilic copolymer). Capillary electrophoresis (CE) has a far higher resolution power to separate these oligomers than the commonly used size exclusion chromatography. Coupling CE to electrospray ionization mass spectrometric detection unravels the separation mechanism. CE separates these oligomers, not only according to their degree of polymerization, but also according to their tacticity, in agreement with NMR analysis. Such analysis will provide insight into the role of these oligomers as stabilizers in emulsion polymerization, and into the mechanism of the RAFT polymerization with respect to degree of polymerization and tacticity.


2021 ◽  
Author(s):  
Hyun Suk Wang ◽  
Nghia P. Truong ◽  
Athina Anastasaki

The ability to reverse controlled radical polymerization and regenerate the monomer would be highly beneficial for both fundamental research and applications, yet has remained very challenging to achieve. Herein, we report a near-quantitative (up to 92%) and catalyst-free depolymerization of various linear, bulky, crosslinked, and functional polymethacrylates made by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Key to our approach is to exploit the high end-group fidelity of RAFT polymers to generate chain-end radicals via thermal homolytic cleavage of carbon-sulfur bond of the RAFT end-group at 120 °C. These radicals trigger a rapid unzipping of both conventional (e.g. poly(methyl methacrylate)) and bulky polymers (e.g. poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA)). Importantly, the depolymerization product can be utilized to either reconstruct the linear polymer or create an entirely new insoluble gel that can also be subjected to depolymerization. This work expands the potential of polymers made by CRP, pushes the boundaries of depolymerization, offers intriguing mechanistic aspects, and enables new applications.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 229
Author(s):  
Marija Kavaliauskaite ◽  
Medeina Steponaviciute ◽  
Justina Kievisaite ◽  
Arturas Katelnikovas ◽  
Vaidas Klimkevicius

Synthesis and study of well-defined thermoresponsive amphiphilic copolymers with various compositions were reported. Kinetics of the reversible addition-fragmentation chain transfer (RAFT) (co)polymerization of styrene (St) and oligo(ethylene glycol) methyl ether methacrylate (PEO5MEMA) was studied by size exclusion chromatography (SEC) and 1H NMR spectroscopy, which allows calculating not only (co)polymerization parameters but also gives valuable information on RAFT (co)polymerization kinetics, process control, and chain propagation. Molecular weight Mn and dispersity Đ of the copolymers were determined by SEC with triple detection. The detailed investigation of styrene and PEO5MEMA (co)polymerization showed that both monomers prefer cross-polymerization due to their low reactivity ratios (r1 < 1, r2 < 1); therefore, the distribution of monomeric units across the copolymer chain of p(St-co-PEO5MEMA) with various compositions is almost ideally statistical or azeotropic. The thermoresponsive properties of p(St-co-PEO5MEMA) copolymers in aqueous solutions as a function of different hydrophilic/hydrophobic substituent ratios were evaluated by measuring the changes in hydrodynamic parameters under applied temperature using the dynamic light scattering method (DLS).


2020 ◽  
pp. 0021955X2094310
Author(s):  
Yan Li ◽  
Zhen Yao ◽  
Shaolong Qiu ◽  
Changchun Zeng ◽  
Kun Cao

In this work, reactive twin screw extrusion was conducted to synthesize long chain branched polypropylenes (LCB-PPs) in a “one-pot” process in which dicumyl peroxide (DCP) initiated maleic anhydride (MAH) grafting onto the linear PP, and the concomitant coupling reaction between ethylene diamine (EDA) and MAH grafted polypropylene (PP-g-MAH) proceeded in series. Fourier transfer infrared spectroscopy (FTIR) on the prepared materials confirmed the occurrence of both reactions. A series of LCB-PPs were prepared using different amounts of EDA, MAH and DCP to study their effects and determine the optimal synthesis conditions. The prepared materials were characterized by size exclusion chromatography (SEC) and rheological analysis to ascertain the polymer microstructure. The foamability of the LCB-PPs by supercritical carbon dioxide (scCO2) foaming and foam morphology were investigated. The LCB-PPs were found to have vastly improved foamability and cellular morphology. Under optimal conditions, a foam expansion ratio of over 20 was achieved.


2013 ◽  
Vol 66 (12) ◽  
pp. 1564 ◽  
Author(s):  
Lily A. Dayter ◽  
Kate A. Murphy ◽  
Devon A. Shipp

A single reversible addition–fragmentation chain transfer (RAFT) agent, malonate N,N-diphenyldithiocarbamate (MDP-DTC) is shown to successfully mediate the polymerization of several monomers with greatly differing reactivities in radical/RAFT polymerizations, including both vinyl acetate and styrene. The chain transfer constants (Ctr) for MDP-DTC for both these monomers were evaluated; these were found to be ~2.7 in styrene and ~26 in vinyl acetate, indicating moderate control over styrene polymerization and good control of vinyl acetate polymerization. In particular, the MDP-DTC RAFT agent allowed for the synthesis of block copolymers of these two monomers without the need for protonation/deprotonation switching, as has been previously developed with N-(4-pyridinyl)-N-methyldithiocarbamate RAFT agents, or other end-group transformations. The thermal properties of the block copolymers were studied using differential scanning calorimetry, and those with sufficiently high molecular weight and styrene composition appear to undergo phase separation. Thus, MDP-DTC may be useful for the production of other block copolymers consisting of monomers with highly dissimilar reactivities.


2011 ◽  
Vol 284-286 ◽  
pp. 1961-1968 ◽  
Author(s):  
Jing Xia Wang ◽  
Xiao Dong Fan ◽  
Wei Tian ◽  
Guang Wen Cheng ◽  
Juan Li Li

Due to the lack of trifunctional polypropylene oxide (TPPO) certified reference material (CRM) with precise molecular weight on the market, it is therefore very important to prepare such CRM to calibrate the molecular weight testing equipments, and assure the quality in polyurethanes manufacture. In this paper, the certification of TPPO CRM was introduced based on the size-exclusion chromatography with a multi-angle laser light scattering (SEC-MALLS) method and end-group analysis method. First, TPPO was synthesized via controlled ring-opening polymerization of propylene oxide in the condition of both high temperature and pressure using double metal cyanide (DMC) complexes as catalyst, and TPPO oligomer as coinitiator. Then, the molecular weight homogeneity of TPPO CRM was evaluated by using the F-distribution model, and the storage stability of the molecular weight of TPPO CRM was assessed. All potential uncertainty factors for the certification of TPPO CRM were evaluated using cause-effect diagram. The results showed that the chemical structure of TPPO CRM was an anticipatory structure, which was confirmed by IR. The molecular weight homogeneity of TPPO CRM was qualified. The storage stability period of the final product was one year with respect to its molecular weight, and the certification results of TPPO CRM obtained by SEC-MALLS and end-group analysis were 4996±162 and 5025±146, respectively.


Sign in / Sign up

Export Citation Format

Share Document