Crop-sequence effects on productivity in a wheat-based cropping system at Wongan Hills, Western Australia

2015 ◽  
Vol 66 (6) ◽  
pp. 580 ◽  
Author(s):  
R. J. French ◽  
R. S. Malik ◽  
M. Seymour

Western Australian grain production is dominated by wheat, but growing wheat continually in unbroken sequences leads to increasing problems with soil nutrient depletion, root and leaf disease build-up, high weed burdens, and possibly other less well-defined production constraints. These can adversely affect both production and grain quality. Including breaks in the crop sequence in the form of break crops, pasture, or fallow can reduce these problems, but these breaks can be expensive to implement, in terms of both direct cost and forgone revenue. It is therefore critical to predict the response of subsequent wheat crops to a break in order to choose crop sequences rationally. We conducted a 4-year experiment at Wongan Hills, Western Australia, evaluating how wheat productivity in a wheat-based cropping sequence is affected by including wheat, barley, lupins, triazine-tolerant and Roundup Ready® canola, oaten hay, volunteer pasture, serradella pasture, and chemical fallow. Wheat yield responded positively to fallow, lupins, oaten hay, volunteer pastures and serradella but not to barley or canola when compared with continuous wheat. Responses depended on seasonal conditions; in a dry year, a very large response occurred after fallow but not after lupin or serradella, whereas in a wetter year, there were large responses after these crops. Fallowing, cutting hay, crop-topping lupins, and spray-topping volunteer and serradella pasture all reduced seedset of annual ryegrass dramatically, and reduced weed competition was a major contributor to the observed break crop responses. Nitrogen fixation by lupins and serradella and water storage by fallow in a dry year were also important, but soilborne diseases did not contribute to wheat yield responses. Some yield responses persisted for at least 3 years, and the contribution of effects of weed competition to yield responses increased over this time. These results emphasise the importance of understanding which productivity constraints are present in a cropping system at a given time when deciding whether a break is necessary and which is the most appropriate break. The results also emphasise the importance of managing the wheat crop after a break to maximise the response and its longevity.

2002 ◽  
Vol 82 (1) ◽  
pp. 53-65 ◽  
Author(s):  
W. J. Bullied ◽  
M. H. Entz ◽  
S. R. Smith, Jr. ◽  
K. C. Bamford

Single-year hay alfalfas (Medicago sativa L.), berseem (Trifolium alexandrinum L.) and red clovers (Trifolium pratense L.), chickling vetch (Lathyrus sativus L.) and lentil (Lens culinaris Medik.) were evaluated for rotational yield and N benefits to the following first-year wheat (Triticum aestivum L.) and second-year barley (Hordeum vulgare L.) crops. Field experiments were initiated in 1997 and 1998 on a Riverdale silty clay soil at Winnipeg, Manitoba. Yield and N content of the following wheat crop were increased following legumes compared to wheat following a canola control. Wheat yield and N content averaged 2955 kg ha–1 and 76.1 kg ha–1, respectively, following the chickling vetch and lentil, 2456 kg ha–1 and 56.4 kg ha–1 following single-year hay legumes, compared with 1706 kg ha–1 and 37.9 kg ha–1 following canola. Non-dormant alfalfas (dormancy rating of eight or greater) contributed to larger grain yields than the dormant alfalfas only in the first year of each experiment. The chickling vetch and lentil provided similar or higher subsequent crop yields and N content for 2 yr compared to a canola control or fallow treatment. This study shows that some increase in yield can be achieved by using a single-year alfalfa hay crop instead of fallow; however, exclusive green manuring of chickling vetch and lentil crops can produce the most increase in yield and N uptake in subsequent crops. Key words: Alfalfa (single-year), legumes (annual), green manure, nitrogen, cropping system


2005 ◽  
Vol 56 (11) ◽  
pp. 1137 ◽  
Author(s):  
W. K. Anderson ◽  
M. A. Hamza ◽  
D. L. Sharma ◽  
M. F. D'Antuono ◽  
F. C. Hoyle ◽  
...  

Modern bread wheat (Triticum aestivum) has been well adapted for survival and production in water-limited environments since it was first domesticated in the Mediterranean basin at least 8000 years ago. Adaptation to various environments has been assisted through selection and cross-breeding for traits that contribute to high and stable yield since that time. Improvements in crop management aimed at improving yield and grain quality probably developed more slowly but the rate of change has accelerated in recent decades. Many studies have shown that the contribution to increased yield from improved management has been about double that from breeding. Both processes have proceeded in parallel, although possibly at different rates in some periods, and positive interactions between breeding and management have been responsible for greater improvements than by either process alone. In southern Australia, management of the wheat crop has focused on improvement of yield and grain quality over the last century. Adaptation has come to be equated with profitability and, recently, with long-term economic and biological viability of the production system. Early emphases on water conservation through the use of bare fallow, crop nutrition through the use of fertilisers, crop rotation with legumes, and mechanisation, have been replaced by, or supplemented with, extensive use of herbicides for weed management, reduced tillage, earlier sowing, retention of crop residues, and the use of ‘break’ crops, largely for management of root diseases. Yields from rainfed wheat crops in Western Australia have doubled since the late 1980s and water-use efficiency has also doubled. The percentage of the crop in Western Australia that qualifies for premium payments for quality has increased 3–4 fold since 1990. Both these trends have been underpinned by the gradual elimination or management of the factors that have been identified as limiting grain yield, grain quality, or long-term viability of the cropping system.


2012 ◽  
Vol 63 (1) ◽  
pp. 1 ◽  
Author(s):  
Mark Seymour ◽  
John A. Kirkegaard ◽  
Mark B. Peoples ◽  
Peter F. White ◽  
Robert J. French

Broadleaf break crops improve cereal yield through disease and weed control, increased nitrogen (N) availability and other mechanisms. In the rainfed farming systems of Australia the magnitude of the yield benefit is highly variable, yet is a major driver for adoption of break crops which are often less profitable and more risky than cereals. Declining area of break crops throughout Australia has re-ignited interest in better understanding the circumstances in which break-crop benefits can be maximised from a farming systems perspective. We compiled and analysed a database of 167 crop sequence experiments conducted throughout Western Australia in the period 1974–2007 to evaluate the impact on wheat (Triticum aestivum L.) grain yield from the use of narrow-leafed lupin (Lupinus angustifolius L.), field pea (Pisum sativum L.), canola (Brassica napus L.) or oats (Avena sativa L.), or following a long fallow where no crop had been sown the previous year. Adjusted for the years in which each was represented the average yield benefit to wheat compared with wheat after wheat was 0.60, 0.45, 0.40, 0.35 and 0.30 t/ha following lupin, field pea, canola, oats or fallow, though direct comparisons between break crops could not be made as few experiments (3) included all species. For all break crops, the mean wheat yield increase was independent of the level of wheat yield, representing a step-change rather than a proportional improvement in yield. Analysis of the larger number and spread of lupin experiments revealed that break-crop benefits increased in higher rainfall areas, following higher yielding lupin crops (>1.5 t/ha), and that the break-crop benefit in terms of yield and water-use efficiency increased significantly after 1991. These observations were often related to the level and/or effectiveness of diseases or grass weed control in the break crop; however, increased contribution of fixed N was also likely with better legume crops. For both lupin and field pea, the magnitude of the break-crop response declined as rate of N fertiliser applied to subsequent wheat crop increased, although non-N related benefits (disease and weed control) tended to dominate wheat response to lupin after 1989. Significant break-crop benefits from lupins (+0.40 t/ha) persisted to a third wheat crop (n = 29) but effects were inconsistent beyond that point. The magnitude, persistence and reliability of the break-crop benefits revealed in this study provide a more accurate framework to assess their likely benefit within the farming system. Further information is required to define the key ‘trigger points’ for the major drivers of the response – water, N, weeds and disease – at which the benefits outweigh the higher risk of these crops and would influence the decision to include them within the system.


2009 ◽  
Vol 7 ◽  
pp. 54-63 ◽  
Author(s):  
JD Ranjit ◽  
RR Bellinder ◽  
P Hobbs ◽  
NK Rajbhandari ◽  
P Kataki

A survey was conducted in order to map the spread of Phalaris minor in wheat in nine districtsin the mid-hill, Terai and inner Terai areas of the rice-wheat cropping system in Nepal during1998/99. Both qualitative and quantitative data were collected from 540 farmers and P. minorwas recorded in all of the nine surveyed districts. Percent summed dominance ratio (SDR) andaverage number per unit area (m2) of P. minor was compared to different districts of mid-hills,inner Tarai, and Tarai belts along with other weeds in the wheat crop. P. minor ranked as thefirst and second important weed of wheat that reduced the wheat yield from 10 to 50 percent. Itspopulations varied from district to district. However, the infestation appeared to be in increasingtrend. Future strategies need to consider in increasing growers' abilities to identify P. minor atearly growth stages when it is particularly difficult to differentiate from wheat seedlings. It issuggested that frequent monitoring of weeds in different tillage and weed management practicesshould be initiated. Besides farmers' training in the future there needs to be emphasis placed onincreasing farmer's awareness on the serious negative impact of P. minor on wheat yield andquality.Key words: Agro-ecology; Phalaris minor; survey; weeds; wheatDOI: 10.3126/narj.v7i0.1869Nepal Agriculture Research Journal Vol.7 2006 pp.54-63


2021 ◽  
Vol 3 (1) ◽  
pp. 29-49
Author(s):  
Ghizlane Astaoui ◽  
Jamal Eddine Dadaiss ◽  
Imane Sebari ◽  
Samir Benmansour ◽  
Ettarid Mohamed

Our work aims to monitor wheat crop using a variety-based approach by taking into consideration four different phenological stages of wheat crop development. In addition to highlighting the contribution of Red-Edge vegetation indices in mapping wheat dry matter and nitrogen content dynamics, as well as using Random Forest regressor in the estimation of wheat yield, dry matter and nitrogen uptake relying on UAV (Unmanned Aerial Vehicle) multispectral imagery. The study was conducted on an experimental platform with 12 wheat varieties located in Sidi Slimane (Morocco). Several flight missions were conducted using eBee UAV with MultiSpec4C camera according to phenological growth stages of wheat. The proposed methodology is subdivided into two approaches, the first aims to find the most suitable vegetation index for wheat’s biophysical parameters estimation and the second to establish a global model regardless of the varieties to estimate the biophysical parameters of wheat: Dry matter and nitrogen uptake. The two approaches were conducted according to six main steps: (1) UAV flight missions and in-situ data acquisition during four phenological stages of wheat development, (2) Processing of UAV multispectral images which enabled us to elaborate the vegetation indices maps (RTVI, MTVI2, NDVI, NDRE, GNDVI, GNDRE, SR-RE et SR-NIR), (3) Automatic extraction of plots by Object-based image analysis approach and creating a spatial database combining the spectral information and wheat’s biophysical parameters, (4) Monitoring wheat growth by generating dry biomass and wheat’s nitrogen uptake model using exponential, polynomial and linear regression for each variety this step resumes the varietal approach, (5) Engendering a global model employing both linear regression and Random Forest technique, (6) Wheat yield estimation. The proposed method has allowed to predict from 1 up to 21% difference between actual and estimated yield when using both RTVI index and Random Forest technique as well as mapping wheat’s dry biomass and nitrogen uptake along with the nitrogen nutrition index (NNI) and therefore facilitate a careful monitoring of the health and the growth of wheat crop. Nevertheless, some wheat varieties have shown a significant difference in yield between 2.6 and 3.3 t/ha.


2018 ◽  
Vol 173 ◽  
pp. 1-5 ◽  
Author(s):  
Harry Harmens ◽  
Felicity Hayes ◽  
Gina Mills ◽  
Katrina Sharps ◽  
Stephanie Osborne ◽  
...  

2007 ◽  
Vol 99 (4) ◽  
pp. 912-920 ◽  
Author(s):  
Joseph M. Krupinsky ◽  
Donald L. Tanaka ◽  
Steven D. Merrill ◽  
Mark A. Liebig ◽  
Michael T. Lares ◽  
...  

2002 ◽  
Vol 42 (2) ◽  
pp. 149 ◽  
Author(s):  
M. D. A. Bolland ◽  
W. J. Cox ◽  
B. J. Codling

Dairy and beef pastures in the high (>800 mm annual average) rainfall areas of south-western Australia, based on subterranean clover (Trifolium subterraneum) and annual ryegrass (Lolium rigidum), grow on acidic to neutral deep (>40 cm) sands, up to 40 cm sand over loam or clay, or where loam or clay occur at the surface. Potassium deficiency is common, particularly for the sandy soils, requiring regular applications of fertiliser potassium for profitable pasture production. A large study was undertaken to assess 6 soil-test procedures, and tissue testing of dried herbage, as predictors of when fertiliser potassium was required for these pastures. The 100 field experiments, each conducted for 1 year, measured dried-herbage production separately for clover and ryegrass in response to applied fertiliser potassium (potassium chloride). Significant (P<0.05) increases in yield to applied potassium (yield response) were obtained in 42 experiments for clover and 6 experiments for ryegrass, indicating that grass roots were more able to access potassium from the soil than clover roots. When percentage of the maximum (relative) yield was related to soil-test potassium values for the top 10 cm of soil, the best relationships were obtained for the exchangeable (1 mol/L NH4Cl) and Colwell (0.5 mol/L NaHCO3-extracted) soil-test procedures for potassium. Both procedures accounted for about 42% of the variation for clover, 15% for ryegrass, and 32% for clover + grass. The Colwell procedure for the top 10 cm of soil is now the standard soil-test method for potassium used in Western Australia. No increases in clover yields to applied potassium were obtained for Colwell potassium at >100 mg/kg soil. There was always a clover-yield increase to applied potassium for Colwell potassium at <30 mg/kg soil. Corresponding potassium concentrations for ryegrass were >50 and <30 mg/kg soil. At potassium concentrations 30–100 mg/kg soil for clover and 30–50 mg/kg soil for ryegrass, the Colwell procedure did not reliably predict yield response, because from nil to large yield responses to applied potassium occurred. The Colwell procedure appears to extract the most labile potassium in the soil, including soluble potassium in soil solution and potassium balancing negative charge sites on soil constituents. In some soils, Colwell potassium was low indicating deficiency, yet plant roots may have accessed potassum deeper in the soil profile. Where the Colwell procedure does not reliably predict soil potassium status, tissue testing may help. The relationship between relative yield and tissue-test potassium varied markedly for different harvests in each year of the experiments, and for different experiments. For clover, the concentration of potassium in dried herbage that was related to 90% of the maximum, potassium non-limiting yield (critical potassium) was at the concentration of about 15 g/kg dried herbage for plants up to 8 weeks old, and at <10 g/kg dried herbage for plants older than 10–12 weeks. For ryegrass, there were insufficient data to provide reliable estimates of critical potassium.


1989 ◽  
Vol 29 (1) ◽  
pp. 69 ◽  
Author(s):  
GJ O'Leary ◽  
RM Binns ◽  
TR Lewis

The effects of delaying chemical fallowing in a pasture rotation on pasture quality and subsequent wheat yield were investigated at sites near Minyip and Charlton, Victoria, in 1983 and 1984. Three chemical fallows were commenced at different times and were compared with a conventionally cultivated fallow. The earliest chemical fallow was established, together with a conventional fallow, at the end of winter. The second chemical fallow commenced towards the end of the rapid spring growth period in mid-October (early hayfreezing), and the third in mid- November (late hayfreezing) on a grass-dominant pasture. The pasture in spring ranged from 51 to 72% digestible dry matter (DDM) but the quality declined to 42-50% DDM by the end of the fallow treatments in autumn at each site in both years. Weathering of the pasture over summer reduced it to roughage. In contrast to a conventional fallow, early hayfreezing of pasture reduced the yield of subsequent wheat crops at Minyip by 14% in 1984 and 26% in 1985. Late hayfreezing caused losses of around 35% in each year at Minyip. At Charlton yield losses were much lower with only 14% loss observed from late hayfreezing in 1985. Because the feed produced by hayfreezing was of very poor quality, hayfreezing cannot be recommended as a viable fodder conservation method as it could not adequately compensate for any yield loss.


2007 ◽  
Vol 21 (1) ◽  
pp. 151-158 ◽  
Author(s):  
Chad S. Trusler ◽  
Thomas F. Peeper ◽  
Amanda E. Stone

An experiment was conducted at three sites in central Oklahoma to compare the efficacy of Italian ryegrass management options in no-till (NT) and conventional tillage (CT) winter wheat. The Italian ryegrass management options included selected herbicide treatments, wheat-for-hay, and a rotation consisting of double-crop soybean seeded immediately after wheat harvest, followed by early season soybean, and then by wheat. In continuous wheat, before application of glyphosate or tillage, Italian ryegrass plant densities in mid-September were 12,300 to 15,000 plants/m2in NT plots vs. 0 to 500 plants/m2in CT plots. When applied POST, diclofop controlled more Italian ryegrass than tralkoxydim or sulfosulfuron. In continuous wheat, yields were greater in CT plots than in NT plots at two of three sites. None of the Italian ryegrass management options consistently reduced Italian ryegrass density in the following wheat crop. Of the Italian ryegrass control strategies applied to continuous wheat, three herbicide treatments in NT at Chickasha and all treatments in NT at Perry reduced Italian ryegrass density in the following wheat crop. Italian ryegrass plant density in November and spike density were highly related to wheat yield at two and three sites, respectively. No management options were more profitable than rotation to soybean.


Sign in / Sign up

Export Citation Format

Share Document