Increasing phosphorus concentration in lupin seed increases grain yield on phosphorus deficient soil

1989 ◽  
Vol 29 (6) ◽  
pp. 797 ◽  
Author(s):  
MDA Bolland ◽  
BH Paynter ◽  
MJ Baker

In a field experiment on a phosphorus (P) deficient soil in south-western Australia, lupin seed (Lupinus angustifolius cv. Danja) of the same size (157 mg/seed) but with 2 different phosphorus (P) concentrations in the seed (2.0 and 2.8 g P/kg) was sown with 4 levels of superphosphate (5, 20, 40 and 60 kg P/ha) drilled with the seed in May 1988 to examine the effect of seed P concentration on subsequent dry matter (DM) and grain yields. Increasing the amount of superphosphate applied from 5 to 60 kg P/ha almost doubled yields. In addition, lupins grown from seed containing the higher P concentration produced larger yields of dried whole tops in early August (69-day-old) for all levels of superphosphate drilled with the seed, the difference decreasing from about 45 to 10% as the level of superphosphate increased from 5 to 60 kg P/ha. By maturity (mid- November), however, plants grown from seed containing the higher P concentration in seed produced higher DM yields of tops and grain only when 5 and 20 kg P/ha superphosphate was drilled with the seed, the differences being about 40 and 20%, respectively.

1988 ◽  
Vol 28 (6) ◽  
pp. 765 ◽  
Author(s):  
MDA Bolland ◽  
MJ Baker

Seed of 2 cultivars of wheat (Triticum aestivum) and 1 burr medic (Medicago polymorpha) with increasing phosphorus (P) concentrations (wheat 1.4-3.7 g P/kg dry matter, medic 3.3-7.9 g P/kg dry matter) were collected from field experiments with variable levels of applied superphosphate (wheat 0- 577 kg P/ha, medic 0-364 kg P/ha) in south-western Australia. These seeds were used in further experiments to examine the effect of seed P concentration on the subsequent dry matter (DM) production of seedlings and plants in 3 glasshouse pot experiments and 1 field experiment. Seed of the same size (wheat, 35 mg/seed; medic, 3.6 mg/seed) but with increasing P concentration produced substantially higher DM yields in the absence or presence of freshly applied superphosphate P up to 28-35 days after sowing in the pot experiments and 67 days after sowing in the field experiment.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xiu-Xiu Chen ◽  
Wei Zhang ◽  
Xiao-Yuan Liang ◽  
Yu-Min Liu ◽  
Shi-Jie Xu ◽  
...  

Abstract Although researchers have determined that attaining high grain yields of winter wheat depends on the spike number and the shoot biomass, a quantitative understanding of how phosphorus (P) nutrition affects spike formation, leaf expansion and photosynthesis is still lacking. A 3-year field experiment with wheat with six P application rates (0, 25, 50, 100, 200, and 400 kg P ha−1) was conducted to investigate this issue. Stem development and mortality, photosynthetic parameters, dry matter accumulation, and P concentration in whole shoots and in single tillers were studied at key growth stages for this purpose. The results indicated that spike number contributed the most to grain yield of all the yield components in a high-yielding (>8 t/ha) winter wheat system. The main stem (MS) contributed 79% to the spike number and tiller 1 (T1) contributed 21%. The 2.7 g kg−1 tiller P concentration associated with 15 mg kg−1 soil Olsen-P at anthesis stage led to the maximal rate of productive T1s (64%). The critical shoot P concentration that resulted in an adequate product of Pn and LAI was identified as 2.1 g kg−1. The thresholds of shoot P concentration that led to the maximum productive ability of T1 and optimal canopy photosynthetic capacity at anthesis were very similar. In conclusion, the thresholds of soil available P and shoot P concentration in whole plants and in single organs (individual tillers) were established for optimal spike formation, canopy photosynthetic capacity, and dry matter accumulation. These thresholds could be useful in achieving high grain yields while avoiding excessive P fertilization.


1990 ◽  
Vol 30 (5) ◽  
pp. 687 ◽  
Author(s):  
RF Brennan

The effectiveness of copper oxychloride (CU2Cl(OH)3, 52% Cu) and chelated Cu (Cu-EDTA, 15% Cu) were compared with the effectiveness of copper sulphate (CuSO4, 25% Cu) as foliar sprays for alleviating Cu deficiency and obtaining maximum grain yields of wheat (1.93-2.5 t/ha). The experiments were conducted over 4 years at 4 sites in the Lake Grace and Newdegate districts, about 300-350 km south-east of Perth, Western Australia. Each source was sprayed at 6 or 7 rates of Cu to define the relationship between grain yield and the amount of foliar Cu applied for wheat grown on soils where Cu had not been previously applied. The levels of Cu sprayed in experiment 1 were 0, 21, 63, 125, 250, and 375 g/ha, and for experiments 2,3 and 4, the levels of Cu were 0, 25, 50, 100, 200, 400 and 800 g/ha. The relative effectiveness of foliar-applied chelated Cu and CU2Cl(OH)3, compared with CuSO4, was 1.72-2.24 and 0.47-0.63, respectively. Although the relative effectiveness of each product was different, similar quantities of each were required to achieve maximum wheat grain yield because of the difference in the Cu contents of each source of Cu. The amounts of Cu product sprayed for maximum grain yields of wheat varied within the ranges 0.9-1.8 kg/ha, 0.8-1.2 kg/ha and 0.8-1.8 kg/ha for CuSO4, chelated Cu and CU2Cl(OH)3, respectively.


1990 ◽  
Vol 30 (6) ◽  
pp. 811 ◽  
Author(s):  
MDA Bolland ◽  
M Baker

A field experiment at Medina, Western Australia, was designed to test whether seed produced at different locations and containing different phosphorus (P) concentration in the seed would change the relationship between yield and the level of superphosphate drilled with the seed. To produce the seed for the experiment, subsamples of the same source of seed of yellow serradella (Ornithopus compressus cv. Madeira) were grown at Medina and Esperance, Western Australia. Seed of the same size produced at each location, and containing 3 different P concentrations, was sown in the experiment at Medina. Three levels of superphosphate were drilled with the seed. Yields (of dried herbage and seed) were increased 2- to 4-fold as the amount of P drilled with the seed was increased from 5 to 40 kg P/ha. Although the Medina seed contained >0.40% P and the Esperance seed contained <0.40% P, plants grown from Esperance seed produced larger yields than plants grown from Medina seed for each of the 3 levels of P drilled with the seed; yield difference increased from about 14 to 70% as the level of P drilled with the seed increased from 5 to 40 kg P/ha. Higher P concentration in the sown seed increased herbage and seed yields by 35-70% when 5 kg P/ha superphosphate was drilled with the seed, and by about 616% when 40 kg P/ha was P drilled with the seed. Seed grown at Esperance produced larger yields for each seed P concentration than Medina seed; yield differences were about 30-90%. The P concentration measured in dried herbage and seed depended only on the amount of P drilled with the seed. It was unaffected by the P concentration in the seed sown, and for dried herbage, it was unaffected by where the seed sown was produced. However, for seed production, the relationship between yield and P concentration in the seed differed depending on where the seed was grown.


1989 ◽  
Vol 29 (6) ◽  
pp. 803 ◽  
Author(s):  
RF Brennan ◽  
WL Crabtree

The incidence of rhizoctonia bare patch in lupins was decreased by increasing the depth of cultivation on a grey sand at Gibson, Western Australia. With a shallow 5 cm cultivation, 18% of the plot area was covered with rhizoctonia patches. Deep ripping with an Agrowplow to 20 cm reduced the area of patch to 7%. Deeper ripping to 30 cm further decreased the area of patch. The area covered by rhizoctonia patches was negatively related with lupin yields and accounted for 65% of the variation of dry matter yields of lupin whole tops and 70% of the variation in grain yields. The increase in lupin grain yield as a result of the cultivation (deep ripping) could possibly be due to the reduction of rhizoctonia patch area and any effects that cultivation alone had on lupin growth. The effects of cultivation (deep ripping) and rhizoctonia bare patch on lupin grain yields cannot be separated in this experiment.


1984 ◽  
Vol 35 (1) ◽  
pp. 1 ◽  
Author(s):  
GS Gill ◽  
WM Blacklow

A field experiment was conducted at Badgingarra, W.A., during 1981 to study competition between wheat (cv. Gamenya) and great brome (Bromus diandrus Roth.). Shoot dry matter per plant of wheat was reduced from 1.41 g per plant in wheat monoculture to 0.50 g per plant after competing for 71 days with great brome at density of 400 plants m-2. Tiller production was reduced from 605 tillers m-2 in monocultures of wheat to 336 tillers m-2 when growing in association with 400 plants m-2 of great brome. Competition with great brome reduced the concentration of nitrogen and phosphorus in wheat shoots; at Feeke's scale 3 (tillers formed) wheat plants competing with 400 plants m-2 of great brome had 3.15 � 0.09% (mean � s.e., w/w) nitrogen and 0.58% phosphorus against a concentration of 4.05 � 0.1% nitrogen and 0.77% phosphorus in the monoculture of wheat. The reduction in the nitrogen - and phosphorus concentrations in wheat shoots earlier than any significant reductions in their dry matter suggested that great brome competed with wheat for absorption of nitrogen and phosphorus. Competition with great brome also resulted in significant reduction in the grain yield (r = - 0.77) and yield determinants of wheat. Reduction in mass per grain (r = - 0.77) was probably due to competition with great brome for water during grain-filling.


1986 ◽  
Vol 37 (5) ◽  
pp. 459 ◽  
Author(s):  
GD Batten ◽  
IF Wardlaw ◽  
MJ Aston

Experiments were designed to examine the effect of the level and duration of application of phosphorus (P) on yield in wheat and the effect of growth conditions prior to anthesis on the utilisation of P taken up during the early stages of development. In the first experiment, wheat (Triticum aestivum cv. Kite) was grown in sand and supplied with a complete nutrient solution containing either 1 mM phosphate or 0.25 mM phosphate. The supply of P was maintained until grain maturity, or stopped at different stages of development (floral initiation, flag leaf emergence, anthesis). The increase in total plant dry matter over this period ranged from 8.8 to 17.6 g/plant, with the 1.0 mM P supply and from 4.1 to 9.5 g/plant with the 0.25 mM P supply. Supply of P beyond anthesis resulted in more tiller dry matter and increased the P content of the grain, but did not increase grain yield at either level. With 1 mM P to maturity, up to 21% P of the grain P could be attributed to retranslocation of P within the plant after anthesis. With 0.25 mM P to floral initiation, 58% of the grain P could be attributed to such retranslocation. In a second experiment plants (cv. Kite) were grown initially at 18/13�C with 0.25 mM P until floral initiation and thereafter with a P-free solution until maturity. Between floral initiation and anthesis plants were placed in six dayhight temperatures, extending (in 3�C steps) from 15/10�C to 30/25OC, and then returned to the standard condition of 18/13�C. Higher pre-anthesis temperatures reduced the pre-anthesis growth period and the plant height, but increased the leaf phosphorus concentration and uptake of phosphorus per plant in both the pre- and post-anthesis periods. Net CO2 exchange indicated that leaf senescence in P-deficient plants was closely associated with the export of nitrogen as well as the export of P. Grain P increased from 0.15% to 0.3% when the preanthesis temperature was increased from 15/10 to 30/25�C, although grain yield per main culm did not vary greatly. These findings highlight the importance of environmental conditions in determining the level of P deficiency in wheat, and show that grain yield is not limited by the amount of P in the grain.


2007 ◽  
Vol 47 (11) ◽  
pp. 1368 ◽  
Author(s):  
D. M. Bakker ◽  
G. J. Hamilton ◽  
D. J. Houlbrooke ◽  
C. Spann ◽  
A. Van Burgel

Waterlogging of duplex soils in Western Australia has long been recognised as a major constraint to the production of agricultural crops and pastures. The work described in this paper examines the application of raised beds to arable land that is frequently waterlogged for the production of crops such as wheat, barley, field peas, lupins and canola. Raised beds are 138 cm wide, seed beds separated by 45 cm wide furrows 183 cm apart. These beds were made with a commercial bed former. Seven sites were selected across the south-eastern wheat belt of Western Australia with the experimental areas varying in size from 10 to 57 ha. These large sites were used to accommodate commercial farm machinery. Each site had raised beds formed with a commercial bedformer. The production from the bedded areas was compared with crops grown conventionally on flat ground under minimum tillage as the control. The experiments were established in 1997 and 1998 and the sites were monitored for a maximum of 5 years. In 11 of the 28 site-years of the experiments, grain yields on the raised beds were statistically significantly higher than the yield from crops grown on the control, with an average yield increase of 0.48 t/ha. Across the whole dataset, growing crops on raised beds did not produce significantly lower yields. Below average rainfall was received for much of the experimental period at several sites. Growing season rainfall had a large effect on grain yield and high rainfall over a period of 40 days after seeding significantly increased the grain yield difference between the raised bed and the control. These data indicate that the use of raised beds lead to higher grain yields when seasonal conditions are appropriate.


1996 ◽  
Vol 36 (2) ◽  
pp. 209 ◽  
Author(s):  
KHM Siddique ◽  
SP Loss ◽  
SP Herwig ◽  
JM Wilson

The growth, phenology, grain yield and neurotoxin (ODAP) content of Lathyrus sativus, L. cicera and L. ochrus were compared with a locally adapted field pea (Pisum sativum L.) to examine their potential as grain legumes in Western Australian farming systems. About 17 lines of each species were obtained from ICARDA, Syria, and grown at 3 agro-climatically different sites. In general, the 3 species were later flowering than field pea, especially L. cicera and L. ochrus; however, L. sativus was the last species to mature. The best Lathyrus lines produced biomass near flowering similar to field pea. At the most favourable site, grain yields were up to 1.6, 2.6 and 1.7 t/ha for L. sativus, L. cicera and L. ochrus respectively, compared with a field pea grain yield of 3.1 t/ha. There was considerable genotype and environmental variation in ODAP concentration in the seed. On average, the ODAP concentration of L. ochrus (6.58 mg/g) was about twice that of L. sativus, and L. cicera had the lowest ODAP concentration (1.31 mg/g). Given that Lathyrus spp. have not had the same breeding effort as field pea and other grain legumes in Australia, these results encourage further selection or breeding. In the shor-tseasoned, mediterranean-type environment of Western Australia, harvest indices and grain yields could be improved with early flowering. Low ODAP concentration should also be sought.


1990 ◽  
Vol 41 (3) ◽  
pp. 449 ◽  
Author(s):  
GK McDonald

The growth and yield of two lines of uniculm barley, WID-103 and WID-105, were compared over a range of sowing rates (50-400 kg/ha) with the commercial varieties Galleon and Schooner. The experiments were conducted at Strathalbyn, S.A., in 1986, 1987 and 1988 and at the Waite Agricultural Research Institute in 1987. A third tillered variety, Clipper, was included in the comparison in 1988. Over the three years plant populations measured early in the season ranged from 39/m2 to 709/m2, and grain yields from 97 to 41 1 g/m2. Dry matter production at ear emergence increased with greater plant density, and both the tillered varieties and the uniculm lines showed similar responses to higher sowing rates. At maturity, dry matter production of the tillered barleys was greater than or equal to that of the uniculms and the harvest indices (HIs) of the two types were similar. Consequently, grain yields of the tillered types were greater than or equal to the yields of the uniculms. Over the four experiments the tillered varieties had a 6% higher yield. The number of ears/m2 was the yield component most affected by plant density in both the tillered and uniculm barleys. The uniculm lines had more spikelets/ear, but tended to set fewer grains/spikelet and produce smaller kernels. The experiments failed to demonstrate any advantage of the uniculm habit to the grain yield of barley. These results differ from previous experiments that showed that a uniculm line, WID-101, had a higher yield than the tillered variety Clipper. It is suggested that the uniculm habit per se was not the cause of this higher yield, but its higher HI resulted in it outyielding Clipper. Current varieties, however, have HIs similar to the uniculm lines and yield equally to or more than the uniculm barleys examined. To further improve the grain yield of uniculm barley, greater dry matter production is necessary as the HIs of these lines are already high.


Sign in / Sign up

Export Citation Format

Share Document