Effect of grazing intensity and number of grazings on herbage production and seed yields of Trifolium subterraneum, Medicago murex, and Ornithopus compressus

1994 ◽  
Vol 34 (2) ◽  
pp. 181 ◽  
Author(s):  
DJ Conlan ◽  
BS Dear ◽  
NE Coombes

The impact of grazing intensity and number of grazings was assessed on the growth and seed production of 5 annual pasture legumes [Trifoliunz subterraneum var. subterraneum cv. Karridale, var. brachycalycinum cv. Clare, var. yanninicum cv. Trikkala; Medicago murex (murex medic) cv. Zodiac; Ornithopus compressus L. (yellow serradella) cv. Avila]. There were 7 grazing treatments: an ungrazed control; and 2 grazing intensities (light and heavy), each for 3 periods of grazing (winter, winter-early spring, winter-late spring). Tethered sheep in small experimental plots were used to provide controlled herbage removal across all cultivars through winter and winter-spring grazing. This grazing system resulted in significantly different levels of herbage being present in the light and heavy grazing treatments following each grazing period. Grazing had variable effects on seed production: <35% increase for Trikkala, and no significant effect for Karridale. Both cultivars continued growth and seed production late in the season after grazing pressure was removed on 8 November. Seed yield of Clare was reduced by 46-49% by heavy grazing treatments. Seed yield of murex medic was not significantly affected by grazing, while that of serradella was reduced by 30-55% by grazing late in the season. The seed yield responses show that cultivar and species responses to grazing may be highly variable. Under favourable spring conditions, Trikkala, Karridale, and murex medic can be grazed heavily until late in the season without adversely affecting seed yield, whilst Clare and Avila cannot.

1987 ◽  
Vol 27 (4) ◽  
pp. 539 ◽  
Author(s):  
MDA Bolland

Twenty-six strains of Trifolium subterraneum subsp. brachycalycinum were assessed as potential pasture legumes on the 2 major soil types (neutral-slightly acid sandy [sandplain] soils and alkaline mallee soils) near Esperance, W.A. The pH (1 : 5, soil: water, w/v) of the top 10 cm of the sandplain soil was 6.3, and of the mallee soil, 8.2. In ungrazed swards on both soil types, subsp. brachycalycinum buried very few burrs but successfully produced seed in the unburied burrs in the dark, dense canopy of leaves. However, when the swards were grazed up to the start of flowering of the earliest flowering strains, subsp. brachycalycinum produced few burrs and little seed (0-47 kg/ha). By contrast, on the sandplain soils, subsp. subterraneum buried most of its burrs and produced much seed in both ungrazed (390-1050 kg/ha) and grazed (403-987 kg/ha) swards, whereas on the alkaline mallee soils, annual medics (Medicago spp.) produced much seed in unburied burrs in both grazed (506- 1050 kg/ha) and ungrazed (480-730 kg/ha) swards. Grazing may have exposed the developing unburied burrs of subsp. brachycalycinum to light, which is known to inhibit the development of burrs and seed. There was no relationship between seed yield and maturity for strains of subsp. brachycalycinum in ungrazed swards on both soils.


2011 ◽  
Vol 38 (4) ◽  
pp. 299 ◽  
Author(s):  
Melissa Pettigrew ◽  
C. Michael Bull

Context Grazing pressure has directly altered and indirectly influenced natural ecosystems worldwide, and has affected and displaced many native species. The endangered pygmy bluetongue lizard Tiliqua adelaidensis is endemic to the mid-north of South Australia. It inhabits remnant native grasslands where it is reliant on the presence of natural spider burrows constructed by lycosid and mygalomorph spiders as refuge sites. These lizards spend the majority of the day associated with their burrow either in the burrow itself or basking at its entrance. The remnant native grasslands of South Australia have endured 200 years of agricultural changes and the introduction of domestic stock has meant that grazing pressure has substantially increased. The vegetation around a burrow is considered to be important in providing shelter for the lizard. However, too much vegetation may reduce basking opportunities and visibility of prey. Stock grazing has been maintained on the majority of sites that contain pygmy bluetongue populations and it is presumed that the lizards can tolerate some form of grazing. However, the level of grazing intensity directly influences the vegetation structure that surrounds the lizard burrows. Aims We aimed to investigate the consequences of severe grazing pressure on the choice of burrows by lizards, and on their burrow related behaviour. Methods We simulated heavy grazing pressure by manually removing aboveground vegetation in the field in replicated quadrats that contained artificial burrows, and by providing bare substrate in half of experimental enclosures in the laboratory. Key results In the field, lizards only occupied the artificial burrows in control quadrats, where vegetation had been left intact. In the laboratory, lizards that occupied both burrows basked for longer at the burrow entrance where vegetation was present. Conclusions Heavy grazing management that results in the majority of vegetation being removed could have a negative impact on pygmy bluetongue lizard recruitment and sustainability. Implications Grazing regimes should be carefully monitored to consider the needs of species that rely heavily on microhabitat structure for their persistence. For the endangered pygmy bluetongue lizard, heavy grazing should be avoided to promote amounts of vegetation suitable to sustain viable populations.


2000 ◽  
Vol 80 (4) ◽  
pp. 809-811 ◽  
Author(s):  
N. A. Fairey ◽  
L. P. Lefkovitch

Six trials were conducted on commercial seed fields of creeping red fescue (Festuca rubra L. var. rubra) in the Peace region to evaluate the sensitivity of seed production to the method and time of application of N fertiliser. In each trial, 68 kg ha−1 N was applied using three methods (surface-broadcast, granular, ammonium nitrate 34-0-0; foliar/soil spray of 28-0-0 solution N; soil-injected 28-0-0 solution N) at each of three times (fall, early spring, late spring). No statistically significant (P = 0.05) interaction, or main effect, of method and time of N were revealed for seed yield, fertile tiller density or for several seed quality characteristics. Seed yield varied greatly among trials (142 to 1240 kg ha−1) and averaged 566 kg ha−1. The results indicate that there is considerable flexibility in the method and time of application of N fertiliser for seed production of creeping red fescue in the Peace region, provided it is applied before the commencement of vigorous plant growth in the spring. Key words: Creeping red fescue, Festuca rubra L., nitrogen fertility, grass seed production, grass seed quality


2002 ◽  
Vol 82 (4) ◽  
pp. 687-692 ◽  
Author(s):  
B. D. Gossen ◽  
J. J. Soroka ◽  
H. G. Najda

Little information is available on the management of turfgrass species for seed production in the Canadian prairies. The objective of these studies was to assess the impact of residue management and row spacing on seed yield under irrigation. A factorial experiment was seeded at Saskatoon, SK, in 1993 to assess the impact of burning or scalping (very close mowing with residue removal) vs. mowing, and 20- vs. 40-cm row spacing on seed yield of Kentucky bluegrass (KBG) (Poa pratensis), creeping red fescue (CRF) (Festuca rubra subsp. rubra) and creeping bentgrass (CBG) (Agrostis palustris). Also, a residue management trial on KBG was seeded at Brooks, AB, in 1993. At Saskatoon, yield was higher at 20-cm spacing across all three species in 1994, but spacing had no impact on winter survival, stand density, tiller growth or yield in subsequent years. Burning and scalping consistently resulted in earlier spring green-up, a higher proportion of fertile tillers, and higher seed yield than mowing. Even with residue management, yield declined after one harvest in CBG and CRF, and after two harvests in KBG. At Brooks, residue management had a similar impact on yield of KBG. A second trial at Brooks examined the impact of row spacing (20, 40, 60 cm) and seeding rate (0.5 to 6 kg seed ha-1) on KBG. Seed yield was highest at 40-cm spacings in 1994, at 60 cm in 1995, and at 40 to 60 cm in 1996. Seeding rate did not have a consistent effect on yield. We conclude that a combination of residue management and 20- to 40-cm spacings provide the highest, most consistent seed yields for these turfgrass species in this region. Key words: Burning, clipping, turfgrass, seed production, row spacing, Poa, Festuca, Agrostis


1967 ◽  
Vol 7 (24) ◽  
pp. 25 ◽  
Author(s):  
GB Taylor ◽  
RC Rossiter

Seed production and persistence of the Carnamah, Northam A, Dwalganup, and Geraldton strains of subterranean clover (Trifolium subterraneum L.) were examined in undefoliated swards in the wheatbelt of Western Australia. The early flowering characteristic of Carnamah was not always associated with higher seed yields. Only when there was a well-defined, early finish to the growing season, or when flowering was very much earlier in Carnamah (viz., following an early 'break' to the season), did this strain clearly outyield both Northam A and Geraldton. The seed yield of Dwalganup was generally inferior to that of the other strains. Factors affecting regeneration are discussed. Under low rainfall conditions, poorer germination-regulation of Carnamah, compared with Geraldton and Northam A, would be expected to result in poorer persistence unless offset by higher seed yields in the Carnamah strain.


2019 ◽  
Vol 41 (6) ◽  
pp. 535 ◽  
Author(s):  
C. M. Waters ◽  
S. E. McDonald ◽  
J. Reseigh ◽  
R. Grant ◽  
D. G. Burnside

Demonstrating sustainable land management (SLM) requires an understanding of the linkages between grazing management and environmental stewardship. Grazing management practices that incorporate strategic periods of rest are promoted internationally as best practice. However, spatial and temporal trends in unmanaged feral (goat) and native (kangaroo) populations in the southern Australian rangelands can result land managers having, at times, control over less than half the grazing pressure, precluding the ability to rest pastures. Few empirical studies have examined the impacts of total grazing pressure (TGP) on biodiversity and resource condition, while the inability to manage grazing intensity at critical times may result in negative impacts on ground cover, changes in pasture species composition, increased rates of soil loss and reduce the ability for soils to store carbon. The widespread adoption of TGP control through exclusion fencing in the southern Australian rangelands has created unprecedented opportunities to manage total grazing pressure, although there is little direct evidence that this infrastructure leads to more sustainable land management. Here we identify several key indicators that are either outcome- or activity-based that could serve as a basis for verification of the impacts of TGP management. Since TGP is the basic determinant of the impact of herbivory on vegetation it follows that the ability for rangeland pastoral management to demonstrate SLM and environmental stewardship will rely on using evidence-based indicators to support environmental social licence to operate.


1989 ◽  
Vol 40 (4) ◽  
pp. 833
Author(s):  
JD McFarlane

Seven rates of copper were applied to the soil prior to the sowing of strawberry clover (Trifolium fragiferumL. cv. Palestine) on an alkaline peat deficient in copper. Symptoms of copper deficiency were evident only on the untreated plots where the clover did not set seed nor persist into the second year.Over five years� production, 1.0 kg Cu/ha continued to provide adequate copper, with regular dressings of superphosphate, for maximum dry matter production and seed yield. It was found that seed yield was more sensitive than vegetative dry matter yield to sub-optimal copper supply. At the lowest rate of applied copper (0.125 kg/ha), the vegetative yield ranged from 53% to 80% of the maximum harvest yield, whereas the seed yield ranged from 15% to 50% of maximum yield.For tissue sampled in the spring, the proposed critical range for copper concentration in the youngest open leaf (YOL) for vegetative dry matter production is 3-35 mg Cu/kg whereas that for seed production is 4.5-5.5 mg Cu/kg. At other times of the year the critical concentrations were higher. It was not clear if this was due to environmental conditions or changing internal requirements for copper.The critical copper concentration range in whole top (WT) tissue of 3.0-4.0 mg/kg for vegetative dry matter production could be applied to all samplings. For seed yield the critical range for copper concentration in WT was 4.0-5.0 mg/kg for the spring harvests. The critical copper concentration in seed for seed production was 5.0-6.0 mg/kg. In the pasture situation a critical concentration of 5.0-6.0 mg Cu/kg in the WT should be adopted when the animal requirement is considered.


2014 ◽  
Vol 73 (2) ◽  
pp. 419-435 ◽  
Author(s):  
Ivica Ljubičić ◽  
Mihaela Britvec ◽  
Sven D. Jelaska ◽  
Stjepan Husnjak

Abstract Optimal grazing pressure on rocky pastures is beneficial to the development of plant species and maintenance of plant diversity. Both abandonment of grazing and overgrazing gradually reduce plant diversity. This paper correlated abundance patterns of the flora on rocky pastures with the values of the chemical composition of the soil resulting from the degree of sheep grazing intensity. The study was carried out in the period from 2008 to 2010 on the islands of Pag, Krk and Cres. At 30 sites, 310 taxa of vascular plants were found. The highest plant diversity and 220 plant taxa were found on moderately grazed pastures. Abandoned pastures with a total of 93 plant taxa observed show the dominance of phanerophytes (35.5%) and the highest proportion of the Mediterranean floral element when compared to pastures of moderate and heavy grazing intensity. The highest concentration of total nitrogen in the soil (0.71%) was recorded on plots of heavy grazing intensity. The results of the study indicate that moderate grazing intensity, from 1 to 1.5 sheep ha−1, can be recommended on the northern Adriatic islands. This should contribute not only to the preservation of plant diversity, but also to the improvement of ecological sheep farming.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2219
Author(s):  
Fabrice Ntakirutimana ◽  
Yiyang Wan ◽  
Wenhui Liu ◽  
Wengang Xie

The seed yield of grass species is greatly dependent on inflorescence morphological traits, starting with spikelets per inflorescence and seeds per spikelet, to kernel size, and then to awns. Previous studies have attempted to estimate the contribution of these traits on the harvested yield of major cereal crops, but little information can be accessed on the influence of awns on seed yield of forage grass species. Siberian wildrye (Elymus sibiricus L.) is a widely important perennial forage grass used to increase forage production in arid and semi-arid grasslands. The grass has long inflorescences with long awns developed at the tip end of the lemmas in the florets. In order to evaluate the effect of awns on Siberian wildrye seed production, awn excision analyses from 10 accessions were performed at flowering stage under irrigated and rainfed regimes. Overall, awn excision reduced thousand-seed weight and seed size under both irrigated and rainfed regimes, which decreased final seed yield per plant. De-awned plants produced significantly more seeds per inflorescence, but spikelets per inflorescence was not influenced by awn excision in either condition. Moreover, histological analyses showed a high degradation of the abscission layer in the awned plants than de-awned ones, and awn excision evidently improved average seed breaking tensile strength (BTS), and thus decreased the degree of seed shattering. In conclusion, the observed significant impact of awn excision on different yield-related traits mirrored the impact of awns on the performance of Siberian wildrye under diverse growing conditions. These results provide useful information for plant breeders, seed producers, and researchers to efficiently improve seed production in Siberian wildrye.


2021 ◽  
Vol 12 ◽  
Author(s):  
Molly E. Dieterich Mabin ◽  
Johanne Brunet ◽  
Heathcliffe Riday ◽  
Lauren Lehmann

Selfing (self-pollination) is the ultimate form of inbreeding, or mating among close relatives. Selfing can create yield loss when inbreeding depression, defined as a lower survival and reproduction of inbred relative to outbred progeny, is present. To determine the impact of selfing in alfalfa (Medicago sativa L.), we quantified the selfing rate of 32 alfalfa seed production fields located in three regions, namely, the Pacific Northwest (PNW), the Central Valley of California (CEV), and the Imperial Valley of California (IMP). Selfing rates (the proportion of selfed seeds) varied between 5.3 and 30% with an average of 12.2% over the 32 seed production fields. In both the parents and their progeny, we observed an excess of heterozygotes relative to Hardy–Weinberg expectations. We detected notable levels of inbreeding in parents (0.231 ± 0.007 parental inbreeding coefficient) and progeny (0.229 ± 0.005). There were a 15% decrease in the number of seeds per stem (seed set) and a 13% decline in the number of seeds per pod in selfed relative to outcrossed stems, but negligible inbreeding depression for pods per raceme and seed weight. The number of racemes on selfed stems increased significantly in fields with greater selfing rates, supporting the presence of geitonogamous or among flower selfing. Despite the significant level of inbreeding depression, seed set did not decrease in fields with higher selfing rates, where the greater number of racemes on the selfed stems increased the seed set. The effects of the field selfing rate on the seed yield metrics were mostly indirect with direct effects of the number of racemes per stem. Available data indicate that the majority of selfing in alfalfa is pollinator-mediated, and thus, eliminating selfing in alfalfa seed production would require the selection of self-incompatible varieties, which, by eliminating inbreeding depression, would provide a 15% potential increase in seed yield and an increase in future hay yield.


Sign in / Sign up

Export Citation Format

Share Document