Identifying suitable grass species for saline areas

1996 ◽  
Vol 36 (2) ◽  
pp. 197 ◽  
Author(s):  
ME Rogers ◽  
CL Noble ◽  
RJ Pederick

The salt tolerance of 20 lines of perennial grasses, including both native Australian and introduced species, was evaluated in 3 separate experiments over 0-180 mol Na Cl/m3 in the greenhouse, with the aim of identifying material that may be grown productively in saline areas in Australia, particularly the Murray- Darling Basin. Lolium perenne cv. Victorian, a species that is recognised as having a moderate level of salt tolerance, was included in all experiments as a reference species. In relative terms (as defined by the rate of the decline in dry matter production under saline conditions), only 5 species or cultivars (Psathyrostachys juncea cvv. Mankota, Tetracan and Vinall, Pascopyrum smithii cv. Walsh and Thinopyrum elongatum cv. Tyrell) were more salt tolerant than L. perenne cv. Victorian. However, several species including the native species Enteropogon acicularis and Themeda triandra, and the introduced species Eragrostis curvula cv. Consol and Thinopyrum elongatum, produced more dry matter than L. perenne over NaCl concentrations ranging from 0 to 180 mol/m3. The salt tolerance of Danthonia richardsonii was very similar to that of L. perenne. It was concluded that Psathyrostachys juncea, Pascopyrum smithii, Enteropogon acicularis and D. richardsonii, may offer potential as salt-tolerant germplasm, however, further field studies are recommended in order to fully assess the response of this material to saline soil conditions.

1997 ◽  
Vol 37 (6) ◽  
pp. 639 ◽  
Author(s):  
M. E. Rogers ◽  
C. L. Noble ◽  
R. J. Pederick

Summary. The salt tolerance of 29 lines of annual and perennial forage legume species was evaluated in 4 separate experiments over 0–100 mol NaCl/m3 in the greenhouse with the aim of identifying genetic material that is more salt tolerant than the more traditionally grown forage legume species. Several species or lines showed potential as salt-tolerant germplasm including Trifolium tomentosum, 2 lines of T. squamosum and T. alexandrinum cvv. Mescani and Wardan which were all more salt tolerant than T. subterraneum. Two lines of Lotus tenuis and 1 line of L. corniculatus were also relatively salt tolerant. Some of this material had never been assessed before under saline conditions. In contrast, several other species (T. arvense, T. vesiculosum, T. angustifolium and T. pratense) were found to be extremely salt sensitive and/or produced very small amounts of dry matter over all NaCl concentrations. We believe that further selection and field evaluation (including selection for increased productivity and salt tolerance over a range of growth stages) is required for the material that showed potential in order to fully assess its performance under saline soil conditions.


1980 ◽  
Vol 60 (3) ◽  
pp. 439-449 ◽  
Author(s):  
D. B. FOWLER ◽  
J. W. HAMM

The salinity tolerance of six annual crop species, wheat, oats, barley, rye, flax and rapeseed, were determined on saline soils that occur north of the Quill Lakes in the northeastern corner of the agricultural area of Saskatchewan. The relative merits of a salt-tolerant grass-legume mixture were also given consideration. The effects of salt stress on spring-sown cultivars became most apparent following exposure to hot, dry summer weather. In contrast, maximum salt tolerance for both winter wheat and winter rye was a function of winterkill. The winterhardiness of both winter annuals was reduced by saline conditions, but winter rye was more adversely affected than winter wheat. Large decreases in seed yield, plant dry weight and height occurred before the effects of increased soil conductivity were expressed for hectoliter weight, 1000-kernel weight, date of maturity, protein content and oil content. Among the spring and winter annual cultivars considered, Bonanza barley and Garry oats demonstrated the greatest salt tolerance. However, where severely saline conditions occurred, mixtures of salt-tolerant perennial grasses and alfalfa proved to be more productive than either barley or oats. The salinity tolerance of all cultivars was greater for years with more favorable growing conditions. It was apparent that stress factors, such as soil salinity, cold, heat, drought, etc., have a cumulative effect in reducing crop performance. This observation emphasizes the importance of minimizing all stress factors when attempting to crop saline soils. Detailed soil analyses indicated that where salts were a problem, the level of salinity was extremely variable, often changing dramatically over short distances. This extreme variability made it difficult to assess the magnitude of the salinity problem. In this regard, crop performance, especially plant height, provided a good indicator for identifying saline areas for purposes of soil testing.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 287 ◽  
Author(s):  
Ibrahim Al-Ashkar ◽  
Ali Alderfasi ◽  
Walid Ben Romdhane ◽  
Mahmoud F. Seleiman ◽  
Rania A. El-Said ◽  
...  

Salinity is a major obstacle to wheat production worldwide. Salt-affected soils could be used by improving salt-tolerant genotypes depending upon the genetic variation and salt stress response of adapted and donor wheat germplasm. We used a comprehensive set of morpho-physiological and biochemical parameters and simple sequence repeat (SSR) marker technique with multivariate analysis to accurately demonstrate the phenotypic and genetic variation of 18 wheat genotypes under salinity stress. All genotypes were evaluated without NaCl as a control and with 150 mM NaCl, until the onset of symptoms of death in the sensitive plant (after 43 days of salinity treatment). The results showed that the relative change of the genetic variation was high for all parameters, heritability (>60%), and genetic gain (>20%). Stepwise regression analysis, noting the importance of the root dry matter, relative turgidity, and their respective contributions to the shoot dry matter, indicated their relevance in improving and evaluating the salt-tolerant genotypes of breeding programs. The relative change of the genotypes in terms of the relative turgidity and shoot dry matter during salt stress was verified using clustering methods. For cluster analysis, the genotypes were classified into three groups: tolerant, intermediate, and sensitive, representing five, six, and seven genotypes, respectively. The morphological and genetic distances were significantly correlated based on the Mantel test. Of the 23 SSR markers that showed polymorphism, 17 were associated with almost all examined parameters. Therefore, based on the observed molecular marker-phenotypic trait association, the markers were highly useful in detecting tolerant and sensitive genotypes. Thus, it considers a helpful tool for salt tolerance through marker-assisted selection.


2007 ◽  
Vol 58 (3) ◽  
pp. 225 ◽  
Author(s):  
M. E. Rogers

The response of 4 temperate grass species (Lolium perenne cv. Victorian, Thinopyrum ponticum cv. Tyrell, Austrodanthonia richardsonii cv. Taranna, A. bipartita cv. Bunderra) to saline irrigated conditions was evaluated over 4 seasons at Tatura in northern Victoria. This experiment followed earlier research where the salt tolerance of ~20 species of grasses was evaluated in the greenhouse. Field plots were established under non-saline conditions and were irrigated with saline water at 1.6, 2.5, and 4.5 dS/m. Measurements made on these plots included dry-matter production, tissue ion (Na+, Cl–, K+, Mg2+, Ca2+) concentrations, in vitro dry-matter digestibility, root distribution, and soil chemistry. Soil salinity (EC1 : 5) and sodicity (SAR1 : 5) levels peaked at 0.30–0.60 m depth and reached 1.3 dS/m and 9.8, respectively, for the highest saline irrigation treatment. Cumulative plant dry-matter production was lower in T. ponticum compared with the Austrodanthonia species and L. perenne at all salinity levels, but in relative terms there was no difference in the salt tolerance among any of the 4 species (the reduction in dry weight at 4.5 dS/m was 10–15% for all species). Leaf tissue concentrations of Na+ and Cl– were significantly lower in A. richardsonii and A. bipartita compared with T. ponticum and L. perenne, and in vitro dry-matter digestibility tended to be greater in L. perenne under saline conditions than in the other 3 species. This research suggests that the 2 native Austrodanthonia species can be grown under moderately saline conditions—either under saline irrigation or in a dryland discharge area—in environments where perennial ryegrass may also be grown.


2013 ◽  
Vol 9 (2) ◽  
pp. 20130029 ◽  
Author(s):  
T. H. Bennett ◽  
T. J. Flowers ◽  
L. Bromham

The amount of salt-affected agricultural land is increasing globally, so new crop varieties are needed that can grow in salt-affected soils. Despite concerted effort to develop salt-tolerant cereal crops, few commercially viable salt-tolerant crops have been released. This is puzzling, given the number of naturally salt-tolerant grass species. To better understand why salt-tolerance occurs naturally but is difficult to breed into crop species, we take a novel, biodiversity-based approach to its study, examining the evolutionary lability of salt-tolerance across the grass family. We analyse the phylogenetic distribution of naturally salt-tolerant species on a phylogeny of 2684 grasses, and find that salt-tolerance has evolved over 70 times, in a wide range of grass lineages. These results are confirmed by repeating the analysis at genus level on a phylogeny of over 800 grass genera. While salt-tolerance evolves surprisingly often, we find that its evolution does not often give rise to a large clade of salt-tolerant species. These results suggest that salt-tolerance is an evolutionarily labile trait in grasses.


2021 ◽  
Author(s):  
Kevin Mganga

<p>Progressive loss of productivity and plant diversity is a major in global rangelands. In African rangelands ecosystems, this process is partly attributed to heavy and uncontrolled grazing by livestock and wildlife, leading to land degradation. Therefore, restoring such degraded rangelands is critical for enhancing ecosystem health and securing the livelihoods of millions of people. Active restoration strategies, e.g. reseeding using indigenous perennial grasses has been identified as a viable ecological solution for restoring degraded African rangelands. Grass species indigenous to African rangelands Cenchrus ciliaris L. (African foxtail grass), Eragrostis superba Peyr. (Maasai love grass), Enteropogon macrostachyus (Hochst. Ex A. Rich.) Monro ex Benth. (Bush rye grass), Chloris roxburghiana Schult. (Horsetail grass) and Chloris gayana Kunth. cv Boma (Rhodes grass) were established in a semi-arid rangeland in Africa under natural conditions to compare their morphoecological characteristics and suitability for use in ecological restoration. Biomass dry matter yields, plant densities, basal cover, seed production, tiller densities and plant height were measured. Chloris gayana cv Boma and E. superba produced significantly higher dry matter biomass yields and seed production than other species. High biomass and seed production demonstrate their suitability to support livestock production and replenish depleted soil seed banks, respectively. Enteropogon macrostachyus and C. ciliaris displayed significantly higher values for plant densities, tiller densities and basal cover, also a component of establishment and ecological restoration success. Chloris roxburghiana ranked lowest in all the measured morphoecological characteristics. This may be a strong indicator of ecological site-specific characteristic of C. roxburghiana. Successful restoration of degraded African semi-arid rangelands using indigenous grass reseeding can best be achieved through careful selection of grasses to take advantage of their specific morphoecological characteristics. This selection should primarily be informed by the intended use of the rangeland.</p>


1993 ◽  
Vol 118 (3) ◽  
pp. 405-408 ◽  
Author(s):  
Y. Saranga ◽  
D. Zamir ◽  
A. Marani ◽  
J. Rudich

Accessions of four tomato species, Lycopersicon esculentum Mill. (Le), L. pennellii (Corr.) O'Arey (Lpen), L. cheesmanii Riley (Lc), and L. peruvianum (L.) Mill., (Lper), and interspecific populations were irrigated with saline water under field conditions and concentrations of Na, K, Cl, Ca, and Mg in leaves and stems were determined. Potassium: sodium ratios in leaves and stems of salt-tolerant genotypes were higher under salinity and were moderately changed by salinity compared to the sensitive genotypes. In the tolerant wild accessions and F1(Le × Lpen), Cl concentrations in leaves and the ratio between Cl in leaves to Cl in stems were lower than in the sensitive Le cultivar. Regulation of the K: Na ratio was found in tolerant wild accessions and tolerant Le cultivars, while regulation of Cl concentration in leaves was found only in the wild germplasm. The effects of ion concentrations on dry matter of interspecific segregating populations, F2(Le × Lpen) and BC1(Le × (Le × Lpen)), were studied by regression analyses. Dry matter was positively correlated with the K: Na ratio in stems and negatively correlated with the Cl concentrations in leaves and stems, thus confirming the results obtained by comparison between the tolerant and sensitive accessions.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ze Peng ◽  
Yiqin Wang ◽  
Guangdong Geng ◽  
Rui Yang ◽  
Zhifen Yang ◽  
...  

Salt stress results in the severe decline of yield and quality in wheat. In the present study, salt-tolerant Tritipyrum (“Y1805”) and salt-sensitive wheat “Chinese Spring” (“CS”) were selected from 121 wheat germplasms to test their physiological, antioxidant enzyme, and transcriptomic responses and mechanisms against salt stress and recovery. 56 chromosomes were identified in “Y1805” that comprised A, B, and D chromosomes from wheat parent and E chromosomes from Thinopyrum elongatum, adding to salt-tolerant trait. Salt stress had a greater inhibitory effect on roots than on shoots, and “Y1805” demonstrated stronger salt tolerance than “CS.” Compared with “CS,” the activities of superoxide dismutase and catalase in “Y1805” significantly increased under salt stress. “Y1805” could synthesize more proline and soluble sugars than “CS.” Both the net photosynthetic rate and chlorophyll a/b were affected by salt stress, though the level of damage in “Y1805” was significantly less than in “CS.” Transcriptome analysis showed that the differences in the transcriptional regulatory networks of “Y1805” were not only in response to salt stress but also in recovery. The functions of many salt-responsive differentially expressed genes were correlated closely with the pathways “peroxisome,” “arginine and proline metabolism,” “starch and sucrose metabolism,” “chlorophyll and porphyrin metabolism,” and “photosynthesis.”


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Md. Amirul Alam ◽  
Abdul Shukor Juraimi ◽  
M. Y. Rafii ◽  
Azizah Abdul Hamid ◽  
Farzad Aslani

Purslane (Portulaca oleraceaL.) is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m−1NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P≤0.05) and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9), 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12), 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13), and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.


Author(s):  
V. V. Buhayov ◽  
V. D. Buhayov

Purpose. To evaluate a promising selection sample of the Psathyrostachys juncea (Fisch.) Nevski for its adaptability to the agro-climatic conditions of the Right-Bank Forest-Steppe and on its basis to create a highly productive multipurpose variety. Methods. System analysis, field, laboratory, comparative calculation. Results. It has been established that Psathyrostachys juncea acquires optimal hay ripeness in the end of the first–at the beginning of the second decade of May, which is 12-13 days earlier in comparison with awnless bromegrass and crested wheat grass. The forage productivity of the green mass of the Psathyrostachys juncea for two mowings ranged from 3.31 kg/m2 in 2018 to 4.90 kg/m2 in 2017 and on average over the years of research was at the level of 4.15 kg/m2, or 41.5 tons/ha, while the yield of dry matter averaged 1.40 kg/m2. It is proved that the forage productivity of the Psathyrostachys juncea for the three years of use primarily depended on meteorological conditions during crop formation. The content of nutrients during the years of research was: crude protein – 14.84, fat – 2.36, fiber – 21.89 and ash – 7.46%, which meets the requirements of highly nutritious feed, especially for beef cattle farming. Conclusions. Psathyrostachys juncea (Fisch.) Nevski enters into the phase of mowing ripeness in conditions of the Right-Bank Forest-Steppe 12-13 days earlier in comparison with other studied perennial grasses. The dry matter yield averages 1.40 kg/m2 with a deviation over the years from 1.20 to 1.65 kg/m2. The value of forage productivity of this species is strongly influenced by meteorological conditions during crop formation. The content of nutrients over the years of the research was: crude protein –14.84, fat – 2.36, fiber – 21.89 and ash – 7.46%. According to the results of the research, the Askanijskyi cultivar of the Psathyrostachys juncea (Fisch.) Nevski variety was submitted for the qualification examination in the system of the state variety testing (application №19658001 dated 21.10.2019).


Sign in / Sign up

Export Citation Format

Share Document