Nitrogen and potassium nutrition of Australian waxflowers grown in siliceous sands. 2. Effect on leaf colour, vase life, and soil pH and conductance

1996 ◽  
Vol 36 (3) ◽  
pp. 367 ◽  
Author(s):  
NA Maier ◽  
GE Barth ◽  
MN Bartetzko ◽  
JS Cecil ◽  
WL Chvyl

The effects of nitrogen (N) and potassium (K) on leaf colour, vase life of flowering stems, and soil pH and electrical conductivity (conductance) were investigated for Australian waxflowers. Experiments were conducted on commercial plantings of Chamelaucium uncinatum cvv. Alba and Purple Pride, and a Chamelaucium hybrid (C. floriferum x C. uncinatum) known locally as Walpole wax, at 3 sites in South Australia. Nitrogen (as NH4NO3) and K (as K2SO4) were applied at rates up to 160 g N/plant and 80 g K/plant over several side dressings during the growing season. Application of N significantly (P<0.05) increased leaf colour ratings for the cv. Alba and Walpole wax. At the higher N rates leaves were dark green. Differences between years were small compared with the effect of applied N. The N x year interaction, and the effect of applied K, were not significant (P>0.05) at any site. For cv. Alba, application of N significantly increased vase life by 5 days in 1992 and 3 days in 1993. For Walpole wax, the effect of N was not consistent between years. Each year, the vase life of flowering stems from cv. Alba were consistently greater compared with stems from Walpole wax. Application of K did not significantly (P>0.05) effect vase life at any site. Annual applications of 80 or 160 g N/plant, as ammonium nitrate, significantly decreased soil pH by 0.3-1.4 units after 2-3 years, whereas application of K, as potassium sulfate, did not affect soil pH. The effect of applied N on soil conductance, although significant, was not consistent between sites. For example, at site 1, increasing the rate of applied N from 0 to 80 g N/plant increased conductance from 0.04 to 0.08 mS/cm in 1992. However, in 1993 it decreased from 0.04 to 0.02 mS/cm. The low conductance values (0.02-0.09 mS/cm) in the 0-60 cm soils, show that fertiliser salts did not accumulate over the course of the study to concentrations which adversely affect plant growth and yield. We conclude that N stress was a significant factor in the occurrence of poor leaf colour, and may be a major factor in the occurrence of defoliation during the flowering period. Optimising N nutrition improved leaf colour, vase life and, depending on the rate, did not significantly increase soil acidity or conductance after 2-3 years.

2017 ◽  
Vol 54 (4) ◽  
pp. 531-548 ◽  
Author(s):  
GUISU ZHOU ◽  
XINHUA YIN

SUMMARYCanopy normalized difference vegetation index (NDVI), soil plant analysis development (SPAD) reading and petiole sap NO3−‒N concentration are increasingly used as quick and non-destructive methods to monitor plant N nutrition and growth status and predict yield of crops. However, little information is available on the comparisons of these three methods in assessing N nutrition, growth and yield for cotton (Gossypium hirsutum L.). Four N rates (0, 34, 67 and 101 kg N ha−1) under two cover conditions [no cover crop and hairy vetch (Vicia villosa) crop] in a 33-year long-term field trial were used to evaluate how canopy NDVI, SPAD reading (related to chlorophyll content) and petiole sap NO3−‒N concentration (conventional method) are able to assess N nutrition and plant biomass and predict yield for cotton. Canopy NDVI and SPAD readings responded less sensitively to N rates than petiole sap NO3−‒N. The responses of NDVI and SPAD reading to N rates were generally reduced due to the winter cover crop with hairy vetch. Significant and positive correlations existed mostly among NDVI, SPAD reading, and petiole sap NO3−‒N concentration. Canopy NDVI during mid-bloom to late bloom and SPAD reading during early bloom to late bloom were effective alternative methods for assessing cotton N nutrition status. The SPAD reading at late bloom was an effective parameter to estimate cotton biomass. The NDVI at early square and SPAD reading during early square to mid-bloom were effective for cotton yield prediction.


2008 ◽  
Vol 16 (1) ◽  
pp. 34 ◽  
Author(s):  
M. STARAST ◽  
K. KARP ◽  
E. VOOL

The aim of the research was to determine the effect of fertilizers on the pH of former arable soils and on the growth and the yield of the lowbush blueberry (Vaccinium angustifolium Ait.). Lowbush blueberry fertilization experiments were established in 1999 at two locations – at Kärla, Saaremaa, West Estonia and at Vasula, Tartu County, South Estonia. Experimental sites were situated on different soils: soil pHKCl at Kärla was 5.5 and at Vasula 6.2. Elemental sulphur and acidifying fertilizers (ammonium sulfate, potassium sulfate and superphosphate) were used in both plantations. Fertilizers were applied based on nutrient in the soil and sulphur was applied at 100 g m–2. Plant growth was recorded in 2001, 2002 and 2003. A positive influence of NPK fertilization on yield was found in both Kärla and Vasula, and yield were 336 g and 41 g higher compared to the control, respectively. The vegetative growth and yield of blueberry depended significantly on soil pH. Elemental sulphur increased soil acidity and on loamy sand soil did not increase plant productivity. The sulphur effect on soil pH began to decrease three years after application. Sulphur can be recommended to increase soil acidity in nutrient-rich soil but, not nutrient poor soil with light texture, where only NPK fertilizers were effective.;


Author(s):  
C. V. Ogbenna ◽  
V. E. Osodeke

Aim: A pot experiment was carried out to determine the effect of sawdust ash and lime (Ca(OH)2) on soil characteristics and yield of sunflower in acidic soil of southeastern Nigeria. Study Design: The experiment was laid out in split-plot design, using sawdust ash (0, 1, 2, 3, 4 t ha-1) as the sub plot and lime (0, 0.5, 1.0, 1.5 t ha-1) as the main plot. Place and Duration of Study: Study was conducted outdoors at Michael Okpara University of Agriculture Umudike, Nigeria, during the 2010 planting season. Materials and Methods: Treatment combinations were applied to the 60 buckets containing soil, mixed thoroughly and watered adequately. After 1 week of treatment application, two sunflower seeds were planted and later thinned to one seedling per bucket. Plant growth and yield data were collected. Pre planting and post-harvest soil samples were collected and analyzed for soil properties. Results: Results showed that with the exception of organic carbon there was significant effect of treatments on all soil chemical properties. Lime and sawdust ash (SDA) as single and combined treatments significantly increased total nitrogen (P=0.05), available phosphorus (P<0.010), and base saturation (P<0.012). The interaction between SDA and lime significantly (P=0.05) increased total exchangeable bases and effective cation exchange capacity, while soil pH was significantly increased (P=0.05) by single applications. The increases in soil chemical properties led to significant positive response of the sunflower. With the exception of number of leaves, other plant parameters (Plant height, stem diameter, head weight, 50 seed weight, head diameter) had significant increases for sawdust ash alone at P=0.05. Correlation studies showed positive significant relationship between soil pH and sunflower yield. Conclusion: The study showed that sunflower performed best at the combination of 3 tha-1 SDA and 1.5 t ha-1 lime producing a mean head weight of 45.4 g.


1996 ◽  
Vol 47 (7) ◽  
pp. 1095 ◽  
Author(s):  
MJ Hill

Potential adaptation zones were modelled for major temperate pasture species using climate data and knowledge-based logical rules. A GIs database was constructed using a 0.025 degree digital elevation model and the Australian Climate Surfaces to create layers of monthly mean climate data for Australia. Soil pH maps for New South Wales, Victoria, and south-eastern South Australia were digitised and added to the database. Simple models using logical operators were constructed using estimates of temperature and aridity thresholds for the main temperate pasture species. The logical models were executed using primary and derived climate layers to create raster maps of potential adaptation zones for pasture species in eastern and south-western Australia. Areas of adaptation on freehold/leasehold land were expressed relative to a potential temperate pasture adaptation zone described by the lower (arid) limit of annual legume adaptation in temperate Australia and the northern limit of lucerne adaptation. Potential adaptation within this area ranged from 66% for lucerne down to <20% for perennial ryegrass in eastern Australia, and 93% for subterranean clover down to zero for perennial ryegrass in south-western Australia. Utility of the species adaptation zones could be enhanced using soil pH maps: a zone for serradella in NSW was refined by restricting adaptation to areas of climatic suitability with low soil pH. Maps for lucerne and Mount Barker subterranean clover showed good agreement with validation data for NSW. The zones may be readily adjusted by simple changes to parameter values in the algorithms. This knowledge-based approach has potential as an aid to targeting resources for plant improvement or to provide advice for more efficient utilisation of existing commercial pasture plants.


2005 ◽  
Vol 45 (4) ◽  
pp. 435 ◽  
Author(s):  
J. L. Cooper

Two forms of biosolids, with and without lime, were applied to acid soils at 2 sites in central New South Wales. Wheat and triticale were then grown on these sites to determine the effect of biosolids on crop growth and yield. The forms of biosolids used were dewatered sewage sludge cake, and N-Viro Soil which is a lime amended sewage sludge. Dewatered sewage sludge cake was applied at rates of 0, 6, 12 and 24 dry Mg/ha, and N-Viro soil at 0, 1.5, 3.0 and 4.5 dry Mg/ha. Biosolids produced grain yield increases of over 50% at both sites, with the largest yield increases at the highest rate of dewatered sewage sludge. Continued cropping at 1 of the sites showed that significant yield increases were still obtained 3 years after the initial application. The addition of lime and N-Viro Soil raised soil pH, and produced small but long lasting yield increases. However, the main benefit of biosolids seems to have come from the nutrients they supplied rather than changes in soil pH.


1971 ◽  
Vol 11 (51) ◽  
pp. 450 ◽  
Author(s):  
JE Schultz

The effect of CCC on the growth of wheat in South Australia was assessed in three years, 1967 to 1969. A significant grain yield response was obtained only in the wet year, 1968, and was attributed to increased grain weight. It is suggested that the delay in heading and leaf senescence which occurred in CCC-treated plants allowed a greater assimilation of water and nutrients, thus producing the heavier grains. The lack of response in grain yield in 1967 and 1969 was probably due to moisture stress during gram filling. CCC reduced crop height significantly in 1968 and 1969, but not in the very dry year, 1967. There was evidence that split applications would be more useful than the single applications used in these experiments. Although CCC can give small increases in yield under some conditions, it is unlikely to be of commercial importance for wheat-growing in South Australia.


1985 ◽  
Vol 25 (1) ◽  
pp. 149 ◽  
Author(s):  
LJ Horsnell

The response of improved pastures to the application of superphosphate is low on the acid sedimentary soils, of the Southern Tablelands of New South Wales, which contain high levels of exchangeable aluminium. An investigation was made into the effect of surface-applied fertilizers on soil pH and on the establishment and growth of lucerne and phalaris on these soils. At 6 weeks after the application of gypsum, superphosphate, or superphosphate plus potassium sulfate, soil pH (H2O) had decreased markedly. This effect extended to a depth of 20 cm, but decreased with time. Initially, lime application increased the pH of the surface soil only. When superphosphate was applied with lime the pH of the soil under the lime layer decreased to the same level as that found in the soil treated with superphosphate alone. Lime, however, had penetrated into the subsoil 102 weeks after application and substantially more so after 13 years. Soil pH (0.01 M CaCl2) was not depressed by the application of fertilizers. Growth and persistence of both species in the first summer were poor, but growth responses to phosphorus, lime and nitrogen increased after the first year. Lucerne showed large growth responses to lime, greater than those found on plots receiving nitrogen fertilizer. Lime reduced aluminium levels both in lucerne plants and in soil. It is suggested that the slow penetration of lime into the soil, the relatively quick effect of superphosphate in increasing subsoil acidity, and high soil aluminium levels are together responsible for the poor persistence and slow growth of both lucerne and phalaris in the early stages. The subsequent large dry matter responses of lucerne to lime are possibly related to increased nitrogen fixation and a lowering of plant and soil aluminium levels. It is suggested that the lime responses of phalaris are also related to lower aluminium levels.


Soil Research ◽  
1989 ◽  
Vol 27 (1) ◽  
pp. 149 ◽  
Author(s):  
TJV Hodge ◽  
DC Lewis

Areas of low soil pH in the south-east of South Australia were delineated by using previously submitted soil samples and soil association maps. A survey was then undertaken in the major soil associations to determine the severity and characteristics of highly acid soils. The acid soil types identified were a siliceous sand over clay (Db/Dy) and a siliceous sand over organic matter/sesquioxide pan (Uc). The top 2.5 cm of both soil types was significantly less acid than the remaining portion of the A horizon, with pH decreasing rapidly with depth until the B horizon, where a substantial soil pH increase occurred. As soil pH (0.01 M CaCl2) decreased below 4.5, extractable soil aluminium (0.01 M CaCl2) increased rapidly, to a maximum extractable concentration of 17 �g g-l. These soil types were also found to be deficient in both phosphorus and potassium, with 65% of the sites having extractable phosphorus concentrations below the critical value of 20 �g g-1 and 35% below the critical value for extractable potassium of 80 �g g-l. For subterranean clover, significant positive correlations were observed between soil pH and plant calcium and sulfur, and between extractable soil aluminium and plant aluminium. Significant negative correlations were observed between soil pH and plant manganese and between extractable soil aluminium and plant calcium and magnesium. For ryegrass, significant positive correlations were observed between extractable soil aluminium and plant aluminium and manganese. Significant negative correlations were observed between soil pH and plant manganese and between extractable soil aluminium and plant calcium. No other significant correlations were obtained. The results are discussed in relation to further acidification and management of these acid siliceous sands.


2012 ◽  
Vol 92 (2) ◽  
pp. 331-339 ◽  
Author(s):  
Noura Ziadi ◽  
Gilles Bélanger ◽  
Annie Claessens

Ziadi, N., Bélanger, G. and Claessens, A. 2012. Relationship between soil nitrate accumulation and in-season corn N nutrition indicators. Can. J. Plant Sci. 92: 331–339. Nitrogen management tools are required to optimize crop growth and yield while minimizing the likelihood of N losses to the environment. We previously determined that non-limiting N conditions for near maximum corn (Zea mays L.) grain yield are reached with the following threshold values for three in-season plant-based indicators of corn N nutrition determined at approximately the V12 stage of development: N nutrition index (NNI) = 0.88, leaf N (NL) concentration = 32.7 mg N g−1 leaf DM, and relative chlorophyll meter (RCM) values = 0.95. Our objective was to study the relationship between these plant-based indicators and soil NO3-N content in an effort to develop tools to reduce the likelihood of soil NO3-N accumulation without affecting grain yield. This study at 5 site-years in Québec consisted of six N fertilizer rates (20–250 kg N ha−1). The NNI, NL concentrations, RCM values, and soil (0–0.15 m) NO3-N content were measured weekly from July to early August, while soil NO3-N content to a 0.90-m depth was measured in late August and October. During the growing season from July to early August, the proportion of data points above the average soil NO3-N content was greater under non-limiting N conditions (NNI ≥ 0.88, NL concentrations ≥ 32.7 mg N g−1 leaf DM, or RCM values ≥ 0.95) than under limiting N conditions. Furthermore, the mean soil NO3-N content of the data points above the general average was much higher under non limiting than limiting N conditions in late August (167 vs. 78 kg NO3-N ha−1 for NNI and RCM; 166 vs. 112 kg NO3-N ha−1 for NL concentration) and October (68 vs. 49 kg NO3-N ha−1). High soil NO3-N accumulation during the season and at harvest occurs only when in-season plant-based N indicators are greater than their threshold values.


2007 ◽  
Vol 58 (12) ◽  
pp. 1204 ◽  
Author(s):  
E. A. Drew ◽  
V. V. S. R. Gupta ◽  
D. K. Roget

Grain legumes grown in low-rainfall (<300 mm per annum) cropping regions of southern Australia have at times failed to provide the rotational benefits observed in other regions, such as improved cereal yields in the season following a legume. ‘In-crop’ herbicides were identified as one possible factor that may have been negatively affecting the legume–rhizobia symbiosis. To test this hypothesis and identify possible mechanisms behind any observed effects, field trials were conducted at Waikerie (South Australia) in 2001, 2003, and 2004. Field pea (Pisum sativum L.) was grown and treated with one of several herbicides 5 weeks after sowing. Crop yellowing, biomass, nodulation, and nitrogen (N2) fixation were assessed 3 weeks after spraying, and biomass, yield, percent nitrogen derived from fixation (%Ndfa), and N2 fixation (2003, 2004) were assessed at the end of the season. Some herbicides stunted plant growth and caused crop yellowing 3 weeks after application; however, none of the herbicides affected N nutrition of peas. Despite this, in 2003, half of the herbicides assessed reduced the %Ndfa by 34–60% relative to unsprayed control plots. Herbicide effects on the measured parameters followed similar trends over each year of the 3-year study. However, effects were rarely significant in 2004 as the trials were primarily affected by low rainfall, indicating that environmental parameters play a key role in determining the severity of herbicide effects on symbiotic N2 fixation. The possible mechanisms behind herbicide-induced damage to the pea–rhizobium symbiosis are discussed, including reduced photosynthetic capacity of plants exposed to herbicides.


Sign in / Sign up

Export Citation Format

Share Document