Leaf gas film retention during submergence of 14 cultivars of wheat (Triticum aestivum)

2017 ◽  
Vol 44 (9) ◽  
pp. 877 ◽  
Author(s):  
Dennis Konnerup ◽  
Anders Winkel ◽  
Max Herzog ◽  
Ole Pedersen

Flooding of fields after sudden rainfall events can result in crops being completely submerged. Some terrestrial plants, including wheat (Triticum aestivum L.), possess superhydrophobic leaf surfaces that retain a thin gas film when submerged, and the gas films enhance gas exchange with the floodwater. However, the leaves lose their hydrophobicity during submergence, and the gas films subsequently disappear. We tested gas film retention time of 14 different wheat cultivars and found that wheat could retain the gas films for a minimum of 2 days, whereas the wild wetland grass Glyceria fluitans (L.) R.Br. had thicker gas films and could retain its gas films for a minimum of 4 days. Scanning electron microscopy showed that the wheat cultivars and G. fluitans possessed high densities of epicuticular wax platelets, which could explain their superhydrophobicity. However, G. fluitans also had papillae that contributed to higher hydrophobicity during the initial submergence and could explain why G. fluitans retained gas films for a longer period of time. The loss of gas films was associated with the leaves being covered by an unidentified substance. We suggest that leaf gas film is a relevant trait to use as a selection criterion to improve the flood tolerance of crops that become temporarily submerged.


1988 ◽  
Vol 66 (5) ◽  
pp. 829-838 ◽  
Author(s):  
M. J. Hodson ◽  
A. G. Sangster

Silica deposition in the lower glume, lemma, and palea of wheat (Triticum aestivum L. cv. Highbury) was investigated using scanning electron microscopy and light microscopy. Silica was present in the outer walls of all the epidermal cells including prickles and papillae of the glume and lemma awns. The glume and the lemma were similar in epidermal silica deposition pattern, both having numerous silicified short trichomes and papillae on inner and outer surfaces. Epidermal long cells and short cells were also silicified. Macrohairs were restricted to isolated areas in these bracts, particularly on the inner surfaces just beneath the awns. The palea was a thin membranous structure differing markedly from the other two bracts. Most of the palea is pressed between the caryopsis and the next floret, and both surfaces are almost devoid of trichomes in these areas. However, at the apex and margins of the palea, macrohairs and papillae were abundant. The results are discussed with respect to possible taxonomic, anatomical, medical, and archaeological implications.



2017 ◽  
Vol 44 (9) ◽  
pp. 888 ◽  
Author(s):  
Anders Winkel ◽  
Max Herzog ◽  
Dennis Konnerup ◽  
Anja Heidi Floytrup ◽  
Ole Pedersen

Submergence invokes a range of stressors to plants with impeded gas exchange between tissues and floodwater being the greatest challenge. Many terrestrial plants including wheat (Triticum aestivum L.), possess superhydrophobic leaf cuticles that retain a thin gas film when submerged, and the gas films enhance gas exchange with the floodwater. However, leaf hydrophobicity is lost during submergence and the gas films disappear accordingly. Here, we completely submerged wheat (with or without gas films) for up to 14 days and found that plants with gas films survived significantly longer (13 days) than plants without (10 days). Plants with gas films also had less dead tissue following a period of recovery. However, this study also revealed that reflections by gas films resulted in a higher light compensation point for underwater net photosynthesis for leaves with gas films compared with leaves without (IC = 52 vs 35 µmol photons m–2 s–1 with or without gas films, respectively). Still, already at ~5% of full sunlight the beneficial effect of gas films overcame the negative under ecologically relevant CO2 concentrations. Our study showed that dryland crops also benefit from leaf gas films during submergence and that this trait should be incorporated to improve flood tolerance of wheat.



2015 ◽  
Vol 4 (1) ◽  
pp. 13-20
Author(s):  
Awad A. ◽  
H. Abdel-Mottaleb ◽  
M. Hammada ◽  
M. Kotb ◽  
M. Abass


Author(s):  
Duangjai Nachiangmai ◽  
Bernie Dell ◽  
Longbin Huang ◽  
Richard W. Bell ◽  
Benjavan Rerkasem


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2557
Author(s):  
Dilara Maslennikova ◽  
Oksana Lastochkina

We evaluated the effect of endobacteria Bacillus subtilis (strain 10–4) as a co-inoculant for promoting plant growth and redox metabolism in two contrasting genotypes of Triticum aestivum L. (wheat): Ekada70 (drought tolerant (DT)) and Salavat Yulaev (drought susceptible (DS)) in early stages of adaptation to drought (12% PEG–6000). Results revealed that drought reduced growth and dramatically augmented oxidative stress markers, i.e., hydrogen peroxide (H2O2) and lipid peroxidation (MDA). Furthermore, the depletion of ascorbate (AsA) and glutathione (GSH), accompanied by a significant activation of ascorbate peroxidase (APX) and glutathione reductase (GR), in both stressed wheat cultivars (which was more pronounced in DS genotype) was found. B. subtilis had a protective effect on growth and antioxidant status, wherein the stabilization of AsA and GSH levels was revealed. This was accompanied by a decrease of drought-caused APX and GR activation in DS plants, while in DT plants additional antioxidant accumulation and GR activation were observed. H2O2 and MDA were considerably reduced in both drought-stressed wheat genotypes because of the application of B. subtilis. Thus, the findings suggest the key roles in B. subtilis-mediated drought tolerance in DS cv. Salavat Yulaev and DT cv. Ekada70 played are AsA and GSH, respectively; which, in both cases, resulted in reduced cell oxidative damage and improved growth in seedlings under drought.



Genetika ◽  
2007 ◽  
Vol 39 (2) ◽  
pp. 273-282
Author(s):  
Desimir Knezevic ◽  
Aleksandra Novoselskaya-Dragovich

Composition of gliadins encoded by Gli-D1 allele as well polymorphisms of Gli-D1 allele investigated in 25 wheat cultivars by using acid polyacrylamide gel electrophoresis. Electrophoregrams obtained by polyacrylamide gel electrophoresis were used for estimation variability of gliadin components and identification of gliadin blocks. Five gliadin blocks encoded by different alleles at Gli-D1 locus were apparently expressed and identified. Gliadin blocks differed according to number of components and their molecular mass. Variability of determined block components indicates that existing polymorphisms of gliadins alleles. Frequency of identified 5 alleles at Gli-D1 locus was in ratio from 4% to 52%. The highest frequency of b allele and the of g allele was found.



1970 ◽  
Vol 34 (3) ◽  
pp. 351-359
Author(s):  
SK Adhikary ◽  
MZ Alam ◽  
NK Paul

An experiment was carried out to study the grain growth pattern of wheat (Triticum aestivum L.) cultivars and to find out association and linear regression of spike weight and grain weight with time. Spike characters indicated that cultivar differences were significant in all the cases with a few exceptions. Linear regression and correlation coefficients revealed that the association between both spike weight and grain weight with time were highly positively significant among the cultivars but their regression coefficients were non- significant. Key Words: Grain growth, correlation, regression, wheat. DOI: 10.3329/bjar.v34i3.3960 Bangladesh J. Agril. Res. 34(3) : 351-359, September 2009



Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1075
Author(s):  
Mateusz Przyborowski ◽  
Sebastian Gasparis ◽  
Maciej Kała ◽  
Wacław Orczyk ◽  
Anna Nadolska-Orczyk

Wheat (Triticum aestivum L.) grain hardness is determined mainly by variations in puroindoline genes (Pina-D1 and Pinb-D1), which are located on the short arm of chromosome 5D. This trait has a direct effect on the technological properties of the flour and the final product quality. The objective of the study was to analyze the mutation frequency in both Pin genes and their influence on grain hardness in 118 modern bread wheat cultivars and breeding lines cultivated in Poland, and 80 landraces from Poland. The PCR products containing the Pin gene coding sequences were sequenced by the Sanger method. Based on detected the SNPs (single-nucleotide polymorphisms) we designed CAPS (cleaved amplified polymorphic sequence) markers for the fast screening of Pinb alleles in a large number of genotypes. All analyzed cultivars, breeding lines, and landraces possess the wild-type Pina-D1a allele. Allelic variation was observed within the Pinb gene. The most frequently occurring allele in modern wheat cultivars and breeding lines (over 50%) was Pinb-D1b. The contribution of the remaining alleles (Pinb-D1a, Pinb-D1c, and Pinb-D1d) was much less (approx. 15% each). In landraces, the most frequent allele was Pinb-D1a (over 70%), followed by Pinb-D1b (21% frequency). Pinb-D1c and Pinb-D1g were found in individual varieties. SKCS (single-kernel characterization system) analysis revealed that grain hardness was strictly connected with Pinb gene allelic variation in most tested cultivars. The mean grain hardness values were significantly greater in cultivars with mutant Pinb variants as compared to those with the wild-type Pinb-D1a allele. Based on grain hardness measured by SKCS, we classified the analyzed cultivars and lines into different classes according to a previously proposed classification system.



2000 ◽  
Vol 6 (S2) ◽  
pp. 872-873
Author(s):  
James R. Rosowski ◽  
Terry L. Bartels ◽  
James F. Colburn ◽  
Jannell L. Colton ◽  
Denton Belk ◽  
...  

Tadpole shrimp inhabit temporary freshwater pools and ponds where their occurrence is largely regulated by rainfall events and water temperature. When dry basins are flooded, cysts of Triops imbibe water and hatch to produce rapidly growing, carapaced larvae. While previous studies show anostracan (fairy shrimp) cyst-surface morphology often species specific, few studies illustrate shell ultrastructure of Triops and none has considered T. longicaudatus. Here we examine the shell of T. longicaudatus (Notostraca) and compare its fine structure to other species of Triops and to that of Artemiafranciscana(Anostraca), which we previously studied.Cysts, produced in culture from Utah broodstock, were purchased from Triops, Inc., 1924 Creighton Rd., Pensacola, FL 32504. Thin sections of cysts were prepared for transmission electron microscopy (TEM) as previously described (Fig. 1). Cysts were also examined with scanning electron microscopy (SEM), dry, whole or fractured (Figs. 2,3), or after imbibition and/or hatching in oxygen saturated, double-distilled water, at 25 ° C.



Sign in / Sign up

Export Citation Format

Share Document