Perkinsus, a protistan parasite of abalone in Australia: A review

1995 ◽  
Vol 46 (3) ◽  
pp. 639 ◽  
Author(s):  
CL Goggin ◽  
RJG Lester

Perkinsus parasites are widespread in molluscs around the world. In 1985 and 1986, a die-back of greenlip abalone, Haliotis laevigata, occurred along part of the South Australian coast. Perkinsus olseni was abundant in H. laevigata from the die-back area and widespread around the Yorke Peninsula in other hosts. After the epizootic had passed, two attempts were made to repopulate the area by transplanting adult H. laevigata; the second attempt, in 1989, appears to have been successful. Laboratory experiments showed that abalone infected with P. olseni had a higher mortality rate than did uninfected abalone and that stress such as high temperature predisposed the abalone to disease. During winter, abalone appear able to contain and possibly eliminate the infection. Molecular studies have indicated that there is a single species of Perkinsus in Australia that is widespread in abalone and bivalves from the Great Barrier Reef and South Australia but is not found in molluscs in Tasmania. This parasite, P. olseni, is similar to P. atlanticus from Portugal but different from P. marinus in North America. P. olseni was shown to be highly infectious to a range of molluscs in the laboratory. P. marinus can be cultured in vitro; this will facilitate investigation into the susceptibility of the parasite to therapeutic agents, the mechanisms of host defence, and the affinities of Perkinsus parasites isolated from Australia and elsewhere.

Author(s):  
Mary Beth Downs ◽  
Wilson Ribot ◽  
Joseph W. Farchaus

Many bacteria possess surface layers (S-layers) that consist of a two-dimensional protein lattice external to the cell envelope. These S-layer arrays are usually composed of a single species of protein or glycoprotein and are not covalently linked to the underlying cell wall. When removed from the cell, S-layer proteins often reassemble into a lattice identical to that found on the cell, even without supporting cell wall fragments. S-layers exist at the interface between the cell and its environment and probably serve as molecular sieves that exclude destructive macromolecules while allowing passage of small nutrients and secreted proteins. Some S-layers are refractory to ingestion by macrophages and, generally, bacteria are more virulent when S-layers are present.When grown in rich medium under aerobic conditions, B. anthracis strain Delta Sterne-1 secretes large amounts of a proteinaceous extractable antigen 1 (EA1) into the growth medium. Immunocytochemistry with rabbit polyclonal anti-EAl antibody made against the secreted protein and gold-conjugated goat anti-rabbit IgG showed that EAI was localized at the cell surface (fig 1), which suggests its role as an S-layer protein.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1278-1285
Author(s):  
Mohamed Yafout ◽  
Amine Ousaid ◽  
Ibrahim Sbai El Otmani ◽  
Youssef Khayati ◽  
Amal Ait Haj Said

The new SARS-CoV-2 belonging to the coronaviruses family has caused a pandemic affecting millions of people around the world. This pandemic has been declared by the World Health Organization as an international public health emergency. Although several clinical trials involving a large number of drugs are currently underway, no treatment protocol for COVID-19 has been officially approved so far. Here we demonstrate through a search in the scientific literature that the traditional Moroccan pharmacopoeia, which includes more than 500 medicinal plants, is a fascinating and promising source for the research of natural molecules active against SARS-CoV-2. Multiple in-silico and in-vitro studies showed that some of the medicinal plants used by Moroccans for centuries possess inhibitory activity against SARS-CoV or SARS-CoV-2. These inhibitory activities are achieved through the different molecular mechanisms of virus penetration and replication, or indirectly through stimulation of immunity. Thus, the potential of plants, plant extracts and molecules derived from plants that are traditionally used in Morocco and have activity against SARS-CoV-2, could be explored in the search for a preventive or curative treatment against COVID-19. Furthermore, safe plants or plant extracts that are proven to stimulate immunity could be officially recommended by governments as nutritional supplements.


Author(s):  
Lara Bittmann

On December 31, 2019, WHO was informed of cases of pneumonia of unknown cause in Wuhan City, China. A novel coronavirus was identified as the cause by Chinese authorities on January 7, 2020 and was provisionally named "2019-nCoV". This new Coronavirus causes a clinical picture which has received now the name COVID-19. The virus has spread subsequently worldwide and was explained on the 11th of March, 2020 by the World Health Organization to the pandemic.


1989 ◽  
Vol 21 (2) ◽  
pp. 31-38 ◽  
Author(s):  
Simon Woodley

The Great Barrier Reef is the largest coral reef system in the world. It is recognised and appreciated worldwide as a unique environment and for this reason has been inscribed on the World Heritage List. The Reef is economically-important to Queensland and Australia, supporting substantial tourism and fishing industries. Management of the Great Barrier Reef to ensure conservation of its natural qualities in perpetuity is achieved through the establishment of the Great Barrier Reef Marine Park. The maintenance of water quality to protect the reef and the industries which depend on it is becoming an increasingly important management issue requiring better knowledge and possibly new standards of treatment and discharge.


Author(s):  
Ekta Shirbhate ◽  
Preeti Patel ◽  
Vijay K Patel ◽  
Ravichandran Veerasamy ◽  
Prabodh C Sharma ◽  
...  

: The novel coronavirus disease-19 (COVID-19), a global pandemic that emerged from Wuhan, China has today travelled all around the world, so far 216 countries or territories with 21,732,472 people infected and 770,866 deaths globally (as per WHO COVID-19 update dated August 18, 2020). Continuous efforts are being made to repurpose the existing drugs and develop vaccines for combating this infection. Despite, to date, no certified antiviral treatment or vaccine prevails. Although, few candidates have displayed their efficacy in in vitro studies and are being repurposed for COVID-19 treatment. This article summarizes synthetic and semi-synthetic compounds displaying potent activity in their clinical experiences or studies against COVID-19 and also focuses on mode of action of drugs being repositioned against COVID-19.


2020 ◽  
Vol 16 ◽  
Author(s):  
Lucas da Silva Santos ◽  
Matheus Fillipe Langanke de Carvalho ◽  
Ana Claudia de Souza Pinto ◽  
Amanda Luisa da Fonseca ◽  
Julio César Dias Lopes ◽  
...  

Background: Malaria greatly affects the world health, having caused more than 228 million cases only in 2018. The emergence of drug resistance is one of the main problems in its treatment, demonstrating the urge for the development of new antimalarial drugs. Objective: Synthesis and in vitro antiplasmodial evaluation of triazole compounds derived from isocoumarins and a 3,4- dihydroisocoumarin. Method: The compounds were synthesized in 4 to 6-step reactions with the formation of the triazole ring via the Copper(I)-catalyzed 1,3-dipolar cycloaddition between isocoumarin or 3,4-dihydroisocoumarin azides and terminal alkynes. This key reaction provided compounds with an unprecedented connection of isocoumarin or 3,4-dihydroisocoumarin and the 1,2,3-triazole ring. The products were tested for their antiplasmodial activity against a Plasmodium falciparum chloroquine resistant and sensitive strains (W2 and 3D7, respectively). Results: Thirty-one substances were efficiently obtained by the proposed routes with an overall yield of 25-53%. The active substances in the antiplasmodial test displayed IC50 values ranging from 0.68-2.89 μM and 0.85-2.07 μM against W2 and 3D7 strains, respectively.


Author(s):  
Roy Livermore

Despite the dumbing-down of education in recent years, it would be unusual to find a ten-year-old who could not name the major continents on a map of the world. Yet how many adults have the faintest idea of the structures that exist within the Earth? Understandably, knowledge is limited by the fact that the Earth’s interior is less accessible than the surface of Pluto, mapped in 2016 by the NASA New Horizons spacecraft. Indeed, Pluto, 7.5 billion kilometres from Earth, was discovered six years earlier than the similar-sized inner core of our planet. Fortunately, modern seismic techniques enable us to image the mantle right down to the core, while laboratory experiments simulating the pressures and temperatures at great depth, combined with computer modelling of mantle convection, help identify its mineral and chemical composition. The results are providing the most rapid advances in our understanding of how this planet works since the great revolution of the 1960s.


Author(s):  
David K. Skelly

This chapter presents two examples to demonstrate that natural history is the necessary basis of any reliable understanding of the world. More than a half century ago, Rachel Carson revolutionized the public’s view of pesticides. The foundation of her success was the careful use of natural history data, collated from across North America. The examples she assembled left little doubt that DDT and other pesticides were causing a widespread decline in birds. More recently, the case for the impact of atrazine on wildlife was based on laboratory experiments, without the advantage of natural history observations. For atrazine, natural history observations now suggest that other chemical agents are more likely to be responsible for feminization of wildlife populations. Developing expectations for scientists to collect natural history information can help to avoid over-extrapolating lab results to wild populations, a tendency often seen when those lab results conform to preconceptions about chemicals in the environment.


2020 ◽  
Vol 328 ◽  
pp. 127126 ◽  
Author(s):  
Stefano Nebbia ◽  
Marzia Giribaldi ◽  
Laura Cavallarin ◽  
Enrico Bertino ◽  
Alessandra Coscia ◽  
...  

2015 ◽  
Vol 59 (5) ◽  
pp. 2867-2874 ◽  
Author(s):  
Atteneri López-Arencibia ◽  
Daniel García-Velázquez ◽  
Carmen M. Martín-Navarro ◽  
Ines Sifaoui ◽  
María Reyes-Batlle ◽  
...  

ABSTRACTThein vitroactivity of a novel group of compounds, hexaazatrinaphthylene derivatives, against two species ofLeishmaniais described in this study. These compounds showed a significant dose-dependent inhibition effect on the proliferation of the parasites, with 50% inhibitory concentrations (IC50s) ranging from 1.23 to 25.05 μM against the promastigote stage and 0.5 to 0.7 μM against intracellular amastigotes. Also, a cytotoxicity assay was carried out to in order to evaluate the possible toxic effects of these compounds. Moreover, different assays were performed to determine the type of cell death induced after incubation with these compounds. The obtained results highlight the potential use of hexaazatrinaphthylene derivatives againstLeishmaniaspecies, and further studies should be undertaken to establish them as novel leishmanicidal therapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document