European colonization and the emergence of novel fire regimes in southeast Australia

2021 ◽  
pp. 205301962110446
Author(s):  
Matthew Adesanya Adeleye ◽  
Simon Edward Connor ◽  
Simon Graeme Haberle ◽  
Annika Herbert ◽  
Josephine Brown

The rapid increase in severe wildfires in many parts of the world, especially in temperate systems, requires urgent attention to reduce fires’ catastrophic impacts on human lives, livelihoods, health and economy. Of particular concern is southeast Australia, which harbours one of the most flammable vegetation types on Earth. While previous studies suggest climate and European activities drove changes in southeast Australian fire regimes in the last 200 years, no study has quantitatively tested the relative roles of these drivers. Here, we use a Generalized Linear Modelling to identify the major driver(s) of fire regime change in the southeast Australian mainland during and prior to European colonization. We use multiple charcoal and pollen records across the region and quantitatively compare fire history to records of climate and vegetation change. Results show low levels of biomass burned before colonization, when landscapes where under Indigenous management, even under variable climates. Biomass burned increased markedly due to vegetation/land-use change after colonization and a major decline in regional precipitation about 100 years later. We conclude that Indigenous-maintained open vegetation minimized the amount of biomass burned prior to colonization, while European-suppression of Indigenous land management has amplified biomass accumulation and fuel connectivity in southeast Australian forests since colonization. While climate change remains a major challenge for fire mitigation, implementation of a management approach similar to the pre-colonial period is suggested to ameliorate the risk of future catastrophic fires in the region.

2007 ◽  
Vol 13 (3) ◽  
pp. 177 ◽  
Author(s):  
Owen Price ◽  
Bryan Baker

A nine year fire history for the Darwin region was created from Landsat imagery, and examined to describe the fire regime across the region. 43% of the region burned each year, and approximately one quarter of the fires occur in the late dry season, which is lower than most other studied areas. Freehold land, which covers 35% of the greater Darwin region, has 20% long-unburnt land. In contrast, most publicly owned and Aboriginal owned land has very high fire frequency (60-70% per year), and only 5% long unburnt. It seems that much of the Freehold land is managed for fire suppression, while the common land is burnt either to protect the Freehold or by pyromaniacs. Generalized Linear Modelling among a random sample of points revealed that fire frequency is higher among large blocks of savannah vegetation, and at greater distances from mangrove vegetation and roads. This suggests that various kinds of fire break can be used to manage fire in the region. The overall fire frequency in the Darwin region is probably too high and is having a negative impact on wildlife. However, the relatively low proportion of late dry season fires means the regime is probably not as bad as in some other regions. The management of fire is ad-hoc and strongly influenced by tenure. There needs to be a clear statement of regional fire targets and a strategy to achieve these. Continuation of the fire mapping is an essential component of achieving the targets.


2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


1999 ◽  
Vol 21 (1) ◽  
pp. 39 ◽  
Author(s):  
AB Craig

This paper examines a range of environmental, research and practical issues affecting fire management of pastoral lands in the southern part of the Kimberley region in Western Australia. Although spinifex grasslands dominate most leases, smaller areas of more productive pastures are crucially important to many enterprises. There is a lack of local documentation of burning practices during traditional Aboriginal occupation; general features of the fire regime at that time can be suggested on the basis of information from other inland areas. Definition of current tire regimes is improving through interpretation of NOAA-AVHRR satellite imagery. Irregular extensive wildfires appear to dominate, although this should be confirmed by further accumulation, validation and analysis of fire history data. While these fires cause ma,jor difficulties. controlled burn~ng is a necessary part of station management. Although general management guidelines have been published. local research into tire-grazing effects has been very limited. For spinifex pastures, reconimendations are generally consistent with those applying elsewhere in northern Australia. They favour periodic burning of mature spinifex late in the year, before or shortly after the arrival of the first rains, with deferment of grazing. At that time. days of high fire danger may still be expected and prediction of fire behaviour is critical to burning decisions. Early dry-season burning is also required for creating protective tire breaks and to prepare for burning later in the year. Further development of tools for predicting fire behaviour, suited to the discontinuous fuels characteristic of the area, would be warranted. A range of questions concerning the timing and spatial pattern of burning, control of post-fire grazing, and the economics of fire management, should be addressed as resources permit. This can be done through a combination of opportunistic studies, modelling and documentation of local experience. The development of an expert system should be considered to assist in planning and conducting burning activities. Key words: Kimberley, fire regimes, fire management, pastoralism, spinifex


2020 ◽  
Vol 9 (5) ◽  
pp. 333
Author(s):  
Nicole C. Inglis ◽  
Jelena Vukomanovic

Fire management in protected areas faces mounting obstacles as climate change alters disturbance regimes, resources are diverted to fighting wildfires, and more people live along the boundaries of parks. Evidence-based prescribed fire management and improved communication with stakeholders is vital to reducing fire risk while maintaining public trust. Numerous national fire databases document when and where natural, prescribed, and human-caused fires have occurred on public lands in the United States. However, these databases are incongruous and non-standardized, making it difficult to visualize spatiotemporal patterns of fire and engage stakeholders in decision-making. We created interactive decision analytics (“VISTAFiRe”) that transform fire history data into clear visualizations of the spatial and temporal dimensions of fire and its management. We demonstrate the utility of our approach using Big Cypress National Preserve and Everglades National Park as examples of protected areas experiencing fire regime change between 1980 and 2017. Our open source visualizations may be applied to any data from the National Park Service Wildland Fire Events Geodatabase, with flexibility to communicate shifts in fire regimes over time, such as the type of ignition, duration and magnitude, and changes in seasonal occurrence. Application of the tool to Everglades and Big Cypress revealed that natural wildfires are occurring earlier in the wildfire season, while human-caused and prescribed wildfires are becoming less and more common, respectively. These new avenues of stakeholder communication are allowing the National Park Service to devise research plans to prepare for environmental change, guide resource allocation, and support decision-making in a clear and timely manner.


2014 ◽  
Vol 23 (7) ◽  
pp. 959 ◽  
Author(s):  
Larissa L. Yocom ◽  
Peter Z. Fulé ◽  
Donald A. Falk ◽  
Celia García-Domínguez ◽  
Eladio Cornejo-Oviedo ◽  
...  

We investigated the influence of broad- v. fine-scale factors on fire in an unusual landscape suitable for distinguishing the drivers of fire synchrony. Our study was conducted in the Sierra Madre Oriental mountain range, in north-eastern Mexico. We worked in nine sites on three parallel mountains that receive nearly identical broad-scale climatic influence, but between which fires are unlikely to spread. We collected and cross dated samples from 357 fire-scarred trees in nine sites in high-elevation mixed-conifer forests and identified fire dates. We used Jaccard similarity analysis to evaluate synchrony among sites and quantified relationships between climate and fire occurrence. Fires were historically frequent (mean fire interval ranged from 8 to 16 years in all sites) and dates of fire exclusion ranged from 1887 to 1962. We found low fire synchrony among the three mountains, indicating a strong influence of fine-scale factors on fire occurrence. Fire regime attributes were similar across mountains despite the independence of fire dates. La Niña events were associated with fire over time, although not significantly since the 1830s. Our results highlight the importance of scale in describing fire regimes and suggest that we can use fire history to understand controls on complex ecosystem processes and patterns.


2003 ◽  
Vol 12 (4) ◽  
pp. 309 ◽  
Author(s):  
Robert E. Keane ◽  
Geoffrey J. Cary ◽  
Russell Parsons

Spatial depictions of fire regimes are indispensable to fire management because they portray important characteristics of wildland fire, such as severity, intensity, and pattern, across a landscape that serves as important reference for future treatment activities. However, spatially explicit fire regime maps are difficult and costly to create requiring extensive expertise in fire history sampling, multivariate statistics, remotely sensed image classification, fire behaviour and effects, fuel dynamics, landscape ecology, simulation modelling, and geographical information systems (GIS). This paper first compares three common strategies for predicting fire regimes (classification, empirical, and simulation) using a 51�000�ha landscape in the Selway-Bitterroot Wilderness Area of Montana, USA. Simulation modelling is identified as the best overall strategy with respect to developing temporally deep spatial fire patterns, but it has limitations. To illustrate these problems, we performed three simulation experiments using the LANDSUM spatial model to determine the relative importance of (1) simulation time span; (2) fire frequency parameters; and (3) fire size parameters on the simulation of landscape fire return interval. The model used to simulate fire regimes is also very important, so we compared two spatially explicit landscape fire succession models (LANDSUM and FIRESCAPE) to demonstrate differences between model predictions and limitations of each on a neutral landscape. FIRESCAPE was developed for simulating fire regimes in eucalypt forests of south-eastern Australia. Finally, challenges for future simulation and fire regime research are presented including field data, scale, fire regime variability, map obsolescence, and classification resolution.


2020 ◽  
Vol 29 (5) ◽  
pp. 326 ◽  
Author(s):  
Martyn Eliott ◽  
Tom Lewis ◽  
Tyron Venn ◽  
Sanjeev Kumar Srivastava

Land management agencies in Queensland conduct planned burning for a variety of reasons, principally for management of fuels for human asset protection and biodiversity management. Using Queensland Parks and Wildlife Service’s archived manually derived fire reports, this study considered the individual components of the fire regime (extent, frequency and season) to determine variation between planned and unplanned fire regimes in south-east Queensland. Overall, between 2004 and 2015, planned fire accounted for 31.6% and unplanned fire 68.4% of all fire on Queensland Parks and Wildlife Service state-managed land. Unplanned fire was more common in spring (September–October), and planned fire was more common in winter (June–August). Unplanned fire affected 71.4% of open forests and woodlands (148563ha), whereas 58.8% of melaleuca communities (8016ha) and 66.6% of plantations (2442ha) were burnt with planned fire. Mapping fire history at a regional scale can be readily done with existing publicly available datasets, which can be used to inform the assessment of planned burning effectiveness for human asset protection and the management of biodiversity. Fire management will benefit from the continued recording of accurate fire occurrence data, which allows for detailed fire regime mapping and subsequent adaptive management of fire regimes in the public domain.


2020 ◽  
Vol 29 (8) ◽  
pp. 649 ◽  
Author(s):  
Mauro E. González ◽  
Ariel A. Muñoz ◽  
Álvaro González-Reyes ◽  
Duncan A. Christie ◽  
Jason Sibold

Historical fire regimes are critical for understanding the potential effects of changing climate and human land-use on forest landscapes. Fire is a major disturbance process affecting the Andean Araucaria forest landscape in north-west Patagonia. The main goals of this study were to reconstruct the fire history of the Andean Araucaria–Nothofagus forests and to evaluate the coupled influences of climate and humans on fire regimes. Reconstructions of past fires indicated that the Araucaria forest landscape has been shaped by widespread, stand-replacing fires favoured by regional interannual climate variability related to major tropical and extratropical climate drivers in the southern hemisphere. Summer precipitation and streamflow reconstructions tended to be below average during fire years. Fire events were significantly related to positive phases of the Southern Annular Mode and to warm and dry summers following El Niño events. Although Euro-Chilean settlement (1883–1960) resulted in widespread burning, cattle ranching by Pehuenche Native Americans during the 18th and 19th centuries also appears to have changed the fire regime. In the context of climate change, two recent widespread wildfires (2002 and 2015) affecting Araucaria forests appear to be novel and an early indication of a climate change driven shift in fire regimes in north-west Patagonia.


2020 ◽  
Author(s):  
Orsolya Valkó

<p>Fire is a globally relevant natural or anthropogenic phenomenon with a rapidly increasing importance in the era of the climate change. In each year, approximately 4% of the global land surface burns. For effective ecosystem conservation, we need to understand fire regimes, identify potential threats, and also the possibilities in the application of prescribed burning for maintaining ecosystems.</p><p>Here I provide an overview on the contradictory role of fire in nature conservation from two continents with contrasting fire histories, focusing on European and North-American grasslands. I show that the ecological effects of fire depend on the fire regime, fire history, ecosystem properties and the socio-economic environment. Catastrophic wildfires, arson, too frequent or improperly planned human-induced fire often lead to the degradation of the ecosystems, the disappearance of rare plant and animal species, and to the encroachment of weed and invasive species. I illustrate with examples that these negative fire effects act synergistically with the human-induced changes in land use systems.</p><p>I also underline with case studies that in both regions, properly designed and controlled prescribed burning regimes can aid the understanding and managing disturbance-dependent ecosystems. Conservation in these dynamic and complex ecosystems is far more than fencing and hoping to exclude disturbance; but the contrary: disturbance is needed for ecosystem functioning. Therefore, the conservation of dynamic, diverse and functioning ecosystems often require drastic interventions and an unconventional conservation attitude. However, the expanding urban-wildlife interface makes the application of prescribed burning challenging worldwide. A major message for the future is about fire policy: it is crucial to moderate the negative effects of fire, however, properly designed prescribed burning should be used as a tool for managing and conserving disturbance-dependent ecosystems.</p>


2016 ◽  
Vol 64 (5) ◽  
pp. 427 ◽  
Author(s):  
Louise M. Romanin ◽  
Feli Hopf ◽  
Simon G. Haberle ◽  
David M. J. S. Bowman

Using pollen and charcoal analysis we examined how vegetation and fire regimes have changed over the last 600 years in the Midlands of Tasmania. Sediment cores from seven lagoons were sampled, with a chronology developed at one site (Diprose Lagoon) using 210Pb and 14C dating. Statistical contrasts of six cores where Pinus served as a marker of European settlement in the early 19th Century and showed significant changes in pollen composition following settlement with (a) influx of ruderal exotic taxa including Plantago lanceolata L., Brassicaceae, Asteraceae (Liguliflorae) and Rumex, (b) increase in pollen of the aquatics Myriophyllum spp. and Cyperaceae, (c) a decline in native herbaceous pollen taxa, including Chenopodiaceae and Asteraceae (Tubuliflorae) and (d) a decline in Allocasuarina and an initial decline and then increase of Poaceae. The presence of Asteraceae (Liguliflorae) in the pre-European period suggests that an important root vegetable Microseris lanceolata (Walp.) Sch.Bip. may have been abundant. Charcoal deposition was low in the pre-European period and significantly increased immediately after European arrival. Collectively, these changes suggest substantial ecological impacts following European settlement including cessation of Aboriginal traditions of fire management, a shift in hydrological conditions from open water lagoons to more ephemeral herb covered lagoons, and increased diversity of alien herbaceous species following pasture establishment.


Sign in / Sign up

Export Citation Format

Share Document