Growth and Nitrogen Uptake by Agropyron desertorum and Pseudoroegneria spicata when Exposed to Nitrate Pulses of Different Duration

1997 ◽  
Vol 24 (5) ◽  
pp. 637 ◽  
Author(s):  
M. Cui ◽  
M. M. Caldwell

Plant growth and nitrate uptake were measured for two Great Basin perennial grasses, Agropyron desertorum and Pseudoroegneria spicata, in sand-filled pots in either monoculture or mixed culture (2 plants/pot). All plants were supplied with the same initial amount of nitrate but delivered in five different pulse durations ranging from 0.5 to 72 h. The pulse duration was controlled by flushing the pots with water at different times after applying the nitrate pulse. The same concentration of nitrate was used in all pulse treatments. Increasing the pulse duration led to significantly increased plant biomass production for both species in both mono- and mixed cultures, and to reduced root/shoot biomass ratio. Biomass and root/shoot ratio were greater for Agropyron in mixed culture than in monoculture. To assess root nitrate uptake capacity, a 30-min tracer pulse was applied to all plants. Plants that had been exposed to longer pulses acquired significantly more nitrate than those that had been exposed to shorter pulses for both total plant acquisition and acquisition per unit root length. With greater root/shoot ratio than Pseudoroegneria, total nitrate acquisition by Agropyron was significantly greater at most pulse durations. Root nitrate uptake per unit mass was also greater for Agropyron than for Pseudoroegneria, indicating that Agropyron is more responsive to nitrate pulsing.

2021 ◽  
Author(s):  
Xuhui Zhou ◽  
Lingyan Zhou ◽  
Yanghui He ◽  
Yuling Fu ◽  
Zhenggang Du ◽  
...  

Abstract Biomass allocation in plants is fundamental for understanding and predicting terrestrial carbon storage. Recent studies suggest that climate warming can differentially affect root and shoot biomass, and subsequently alter root: shoot ratio. However, warming effects on root: shoot ratio and their underlying drivers at a global scale remain unclear. Using a global synthesis of >300 studies, we here show that warming significantly increases biomass allocation to roots (by 13.1%), and two factors drive this response: mean annual precipitation of the site, and the type of mycorrhizal fungi associated with a plant. Warming-induced allocation to roots is greater in relatively drier habitats compared to shoots (by 15.1%), but lower in wetter sites (by 4.9%), especially for plants associated with arbuscular mycorrhizal fungi compared to ectomycorrhizal fungi. Root-biomass responses to warming predominantly determine the biomass allocation in terrestrial plants suggesting that warming can reinforce the importance of belowground resource uptake. Our study highlights that the wetness or dryness of a site and plants’ mycorrhizal associations strongly regulate terrestrial carbon cycle by altering biomass allocation strategies in a warmer world.


2017 ◽  
Vol 6 (1) ◽  
pp. 8 ◽  
Author(s):  
Hafidha Asni Akmalia

AbstrakIntensitas cahaya dan ketersediaan air merupakan faktor-faktor yang menjadi penunjang maupun penghambat pertumbuhan tergantung kisaran yang mampu diterima tanaman. Tujuan penelitian ini adalah untuk mengetahui pengaruh intensitas cahaya dan penyiraman terhadap pertumbuhan tanaman jagung. Rancangan penelitian yang digunakan adalah Rancangan Acak Lengkap dengan 3 faktor intensitas cahaya (L1 : 63694 ; L2 : 11408 dan L3 : 3897 Lux) dan 3 faktor penyiraman (pemberian air sebanyak W1 : 2 L; W2 : 1,6 L; W3 : 1,2 L). Tiap kombinasi perlakuan dibuat tiga ulangan. Penanaman jagung dilakukan di lahan Sawitsari, Yogyakarta. Jagung dipanen saat berumur 75 hari dengan karakter pertumbuhan yang diamati meliputi tinggi tanaman, jumlah daun, rasio daun, berat kering tanaman, dan rasio akar-tajuk. Data dianalisis menggunakan Analisis Sidik Ragam Varian (Anava) dilanjutkan dengan uji Duncan’s Multiple Range Test (DMRT) pada tingkat signifikansi 5%. Hasil penelitian menunjukkan bahwa L1W1 (63694 Lux ; 2 L) menyebabkan semua karakter pertumbuhan meningkat.Kata kunci : jagung, pertumbuhan, intensitas cahaya, penyiraman AbstractThe light intensity and water availability are the factors both supporting and supressing plant growth and it depends on which level that plant can accept. The aim of this research was to evaluate the effect of light intensity and watering in maize growth. This research used Randomized Completed Design with 3 regimes of light intensity (L1 : 63694, L2 : 11408 dan L3 : 3897 Lux) and 3 regimes of watering (W1 : 2 L, W2 : 1,6 L  and W3 : 1,2 L). Each combination was done with 3 replications and it was done in Sawitsari, Yogyakarta. Maize was harvested in 75 days after the treatment and the measured parameters were plant height, leaf total number, leaf ratio, root-shoot ratio, and plant biomass. Data were analyzed by Anava and DMRT test with significance level of 5%. The results showed that L1W1 treatment increased all parameters of growth. Keywords: maize, growth, light intensity, watering


2017 ◽  
Vol 9 (1) ◽  
pp. 502-507 ◽  
Author(s):  
Parvaze A. Sofi ◽  
Iram Saba ◽  
Zakir Amin

The present study was aimed at assessing the root traits and rhizobial inoculation in relation to drought in common bean, Phaseolus vulgaris. Drought caused the largest decrease in shoot biomass followed by plant height, while an increase was recorded inroot/shoot ratio. Rhizobial inoculation caused largest increase in shoot biomass followed by root volume and root biomass and smallest increase in rooting depth. WB-216 and WB-185 had better rooting depth in all treatments. However, WB-83 (92.67) had highest rooting depth under irrigated conditions and SR-1 had highest rooting depth under irrigated conditions treated with rhizobium (108.50). Similarly, WB-216 had highest root/shoot ratio under drought (2.693) followed by WB-185 (1.285) while lowest value was recorded for Arka Anoop (0.373). In rhizobium treated drought condition, WB-216 recorded highest root/shoot ratio (5.540) followed by SFB-1 (1.967). Under irrigated conditions (both with and without rhizobium), WB-185 recorded highest root/shoot ratio while lowest was recorded for SR-1 (0.166). The mean squares due to root depth, root biomass and root volume were significant whereas the mean squares due to water and rhizobium were non-significant. Among interactions the genotype x water regime was significant for rooting depth (5 % level), genotype x rhizobia was significant for rooting depth and root volume (1 % level) and the interaction of genotype x water regime x rhizobium was significant for rooting depth, root biomass and root volume (1 % level). The results reinforce the need to further analyse the potential of other soil microbes in common bean rhizosphere in amelioration of the effects of water stress.


2004 ◽  
Vol 82 (4) ◽  
pp. 443-449 ◽  
Author(s):  
Anna Liisa Ruotsalainen ◽  
Sami Aikio

We studied the competition between mycorrhiza-forming Trientalis europaea L. and nonmycorrhizal Carex bigelowii Torrey ex Schweinitz in a climate chamber experiment. The plants were grown either singly or together with a conspecific or heterospecific individual, with arbuscular mycorrhizal inoculum present or absent. Inoculated T. euro paea formed abundant arbuscular mycorrhizal structures, but the mycorrhizae did not affect its biomass or the whole plant's relative growth rate (RGR). Carex bigelowii did not form mycorrhizae, but its shoot biomass and RGR were lower in the inoculated pots. The presence of a conspecific or heterospecific plant had no effect on the shoot biomasses or RGR of either plant species. Mycorrhizal inoculation increased the root/shoot ratio of C. bigelowii in all competition treatments. The presence of C. bigelowii decreased the root/shoot ratio of T. europaea in both mycorrhizal and nonmy corrhizal state. Mycorrhizal inoculum thus had a direct negative effect on the growth of a nonmycorrhizal plant. The result suggests that although mycorrhizae may not always directly affect the performance of the host plant, they may possibly increase the host plant performance in relation to nonmycorrhizal neighbours. Mycorrhizal inoculum and mycorrhizal symbiosis may increase asymmetry of interspecific competition, which may facilitate the coexistence of plant species in cases when a larger individual is more negatively affected.Key words: arbuscular mycorrhiza, competitive asymmetry, micropropagation.


Author(s):  
Seidu Iddrisu Bawa ◽  
Charles Quansah ◽  
Henry Oppong Tuffour ◽  
Awudu Abubakari ◽  
Caleb Melenya

Two factorial pot experiments arranged in a Completely Randomised Design (CRD) with three replications were carried out to assess the impact of different levels of soil compaction and fertilizer amendments on root growth and biomass yield of maize (Zea mays L.) and soybean (Glycine max L.) plants. The treatments were different rates of bulk densities – 1.3, 1.5 and 1.7 Mg m-3 and fertilizer amendments comprising 100% poultry manure (applied at 15 g/plant), 100% 15:15:15 NPK fertilizer (applied at 2.89 g/plant) and 50% rate each of poultry manure and NPK fertilizer (applied at 7.5 g poultry manure + 1.45 g NPK/plant), and control (no fertilizer amendments). Soil compaction reduced the heights of maize and soybean plants. Increasing soil compaction resulted in the accumulation of most of the root biomass in the uncompacted soil above the compacted layer. Application of soil amendments increased the relative root biomass of maize plants in the uncompacted soil, while that in the compacted soil was reduced. In the case of soybean plants, although the relative root biomass in the uncompacted soil was relatively greater than that of maize plants, application of soil amendments tended to slightly decrease the relative root biomass to that of the control. The shoot biomass of both crops decreased with increasing soil bulk density. All the applied soil amendments significantly increased the shoot biomass of maize and soybean plants over the control. The magnitude of response of the crops to the soil amendments was greater in soybean than in maize plants. Soil compaction and amendments significantly influenced root/shoot ratio of both crops. The root/shoot ratio decreased with increasing compaction from 1.3 to 1.5 Mg m-3, however, at 1.7 Mg m-3, the root/shoot ratio increased. The fertilizer amendments significantly influenced the root/shoot ratio of maize but not soybean plants. The fertilizer amendments increased the biomass of both roots and shoots, being higher in the former than in the latter. The fertilizer amendments x compaction interactions showed that the root/shoot ratio was influenced by the type of crop, and the confounding effects of factor interactions on the relative increases/decreases in shoot and root growth. Overall, soil compaction accounted for 52 to 100% of the variations in the magnitude of the measured parameters of maize plants, and 62 to 98% for soybean plants. The ideal bulk density for shoot biomass production of both crops should, therefore, be within the range of 1.3 – 1.5 Mg m-3. At soil bulk density of 1.5 Mg m-3 and above, soil amendment should be added to ameliorate the negative impact of soil compaction.


2011 ◽  
Vol 62 (5) ◽  
pp. 367 ◽  
Author(s):  
P. R. Ward ◽  
J. A. Palta ◽  
H. A. Waddell

Perennial plants such as lucerne are now widely acknowledged as one means of controlling the expansion of dryland salinity in southern Australia. However, their inclusion in farming systems is limited by poor seedling vigour, thought to be associated with greater allocation of biomass to perennating organs in roots, and poor adaptation to some soils and climatic conditions in south-western Australia. For this reason, interest in other perennial options such as perennial wheat is increasing. In this research we compared early (29-day) seedling growth and root : shoot ratios for annual and perennial medics (Medicago truncatula and M. sativa), and for annual and perennial wheat (Triticum aestivum and Triticum × Agropyron cross). For the medics, the annual reached the 6-leaf stage after 29 days and produced more root and shoot biomass than lucerne (4-leaf stage after 29 days), but there was no difference in root : shoot ratio or depth of root growth. For wheat, there were no differences in root growth, shoot growth, or root : shoot ratio between the annual and perennial lines (Zadoks growth stages 23 and 21, respectively, after 29 days). The poor competitive performance of M. sativa seedlings relative to M. truncatula was not due to changed allocation of biomass to shoots, but was related more to seed size (2.7 and 5.0 mg, respectively). This does not seem to occur to the same extent in perennial wheat lines, suggesting that their seedling performance may be more competitive.


2010 ◽  
Vol 6 (6) ◽  
pp. 811-814 ◽  
Author(s):  
Ming Nie ◽  
Qiang Yang ◽  
Li-Fen Jiang ◽  
Chang-Ming Fang ◽  
Jia-Kuan Chen ◽  
...  

Biomass allocation is an important plant trait that responds plastically to environmental heterogeneities. However, the effects on this trait of pollutants owing to human activities remain largely unknown. In this study, we investigated the response of biomass allocation of Phragmites australis to petroleum pollution by a 13 CO 2 pulse-labelling technique. Our data show that plant biomass significantly decreased under petroleum pollution, but the root–shoot ratio for both plant biomass and 13 C increased with increasing petroleum concentration, suggesting that plants could increase biomass allocation to roots in petroleum-polluted soil. Furthermore, assimilated 13 C was found to be significantly higher in soil, microbial biomass and soil respiration after soils were polluted by petroleum. These results suggested that the carbon released from roots is rapidly turned over by soil microbes under petroleum pollution. This study found that plants can modulate biomass allocation in response to petroleum pollution.


HortScience ◽  
2002 ◽  
Vol 37 (6) ◽  
pp. 890-893 ◽  
Author(s):  
Terence R. Bates ◽  
Richard M. Dunst ◽  
Theodore Taft ◽  
Michael Vercant

One- and 2-year-old 'Concord' (Vitis labruscana L.) grapevines were used to study the effect of soil pH on vegetative growth and nutrition. Ninety-eight, own-rooted, 'Concord' grapevines were planted in 94.6-L pots containing vineyard soil adjusted to seven soil pH levels ranging from 3.5 to 7.5. After the first growing season, seven vines from each soil pH treatment were randomly selected, destructively harvested, and measured for root and shoot growth. The remaining 49 vines over-wintered in the pots, were defruited in year two, and were destructively harvested at the end of the second growing season. There was a reduction in root biomass below soil pH of 4.5 and a greater reduction in shoot biomass leading to a higher root: shoot ratio. There were no significant differences in vegetative growth of young 'Concord' vines from a soil pH of 5.0-7.5. However, there was a trend toward lower shoot biomass and higher root: shoot ratio at the highest soil pH level. Phylloxera nodosities on roots were present in equal densities at all soil pH values. However, the negative impact of phylloxera on vine dry mass was greater on vines under nutrient stress at the highest and lowest pH treatments than on those with adequate nutrition at the mid-range soil pH values.


2017 ◽  
Vol 2 (8) ◽  
pp. 17 ◽  
Author(s):  
A. N. Ashraf ◽  
S. Zulkefly ◽  
Salisu Monsuru Adekunle ◽  
Mohd Yusoff A. Samad

The effect of palm oil mill effluent vermicompost on growth and vegetative traits of oil palm seedlings was evaluated. Different rates of vermicompost 10 g, 20 g and 30 g and 20 g of an NPK blue fertilizer as designated control was used. The experiment was conducted over a period of 120 days. Growth and vegetative traits like plant height, girth size, total dry weight (TDW) and root: shoot ratio (RSR) and foliar nutrient data were collected. Noticeably, the vermicompost and the NPK blue fertilizer were at par in stimulating the growth of the oil as shown in the plant height and girth size. The total dry weight (TDW) and Root: shoot ratio (RSR) showed that the vermicompost especially the higher rates significantly performed equal and positively affected the plant biomass. The nitrogen content was apparent in the plants grown with the highest rate of the vermicompost 30 g and the fertilizer with a significant effect on the leaf chlorophyll content. The results showed that the vermicompost particularly the higher rates were as suitable as the fertilizer with respect to the growth and vegetative traits. 


2017 ◽  
Vol 210 ◽  
pp. 183-191 ◽  
Author(s):  
Upendra M. Sainju ◽  
Brett L. Allen ◽  
Andrew W. Lenssen ◽  
Rajan P. Ghimire

Sign in / Sign up

Export Citation Format

Share Document