115 APOPTOSIS EVENT OF PREIMPLANTATION DEVELOPMENT STAGES IN PORCINE IN VITRO-FERTILIZED EMBRYOS

2009 ◽  
Vol 21 (1) ◽  
pp. 157
Author(s):  
S. M. Hong ◽  
S. H. Jeong ◽  
S. H. Hyun

Little is known about apoptosis events in porcine preimplantation embryos. In this study, we aimed to determine whether the evaluated markers of cell death could be found at particular developmental stages of normal porcine in vitro-fertilized (IVF) embryos. We investigated the characteristics of spontaneous and induced apoptosis during preimplantation development stages of porcine IVF embryos. In experiment 1, to induce apoptosis of porcine IVF embryos, porcine IVF embryos at 22 h postinsemination were treated at different concentrations of actinomycin D (0, 5, 50 and 500 ng mL–1 in NCSU medium). Four groups were incubated at 37°C in 5% CO2, 5%O2 for 8 h, and then washed to NCSU medium and incubated until blastocyst (BL) stage. We examined cleavage rate at 2 days and BL development rate at 7 days after in vitro culture (IVC). A significantly less rate of cleavage was found in the 500 ng mL–1 group compared with others (500 ng mL–1 v. 0, 5, 50 ng mL–1; 15.4% v. 48.6%, 40%, 32%). In the results of BL formation rate, there was a significantly less BL formation rate in 500 ng mL–1 compared with others (500 ng mL–1 v. 0, 5, 50 ng mL–1; 0% v. 10%, 8.8%, 9%). In experiment 2, to evaluate apoptotic cells at different stage (2-cell, 4-cell, 8-cell and BL stage) of all groups, we conducted TUNEL assay based on morphological assessment of nuclei and on detection of specific DNA degradation under fluorescence microscope. This result showed that apoptosis is a normal event during preimplantation development in control group (0 ng mL–1 actinomycin D). A high number of the BL derived control group contained at least one apoptotic cell. Actinomycin D treated BL responded to the presence of apoptotic inductor by a significant decrease in the average number of blastomeres and a significant increase in the incidence of apoptotic cell death. In the 500 ng mL–1 group, the incidence of apoptosis increased at the 4-cell stage and later. This result suggested that apoptosis is a process of normal embryonic development and actinomycin D is a useful tool for the apoptosis study of porcine preimplantation embryos. This work was supported by a grant (#20070301034040) from BioGreen 21 program, Rural Development Administration, Republic of Korea.

Zygote ◽  
2007 ◽  
Vol 15 (3) ◽  
pp. 241-249 ◽  
Author(s):  
D. Fabian ◽  
S. Juhás ◽  
G. Il'ková ◽  
J. Koppel

SummaryThis study was undertaken to obtain information about characteristics of different types of induced apoptosis in preimplantation embryos. Freshly isolated mouse blastocysts were cultured in vitro with the addition of two apoptotic inductors – TNFα and actinomycin D – at various doses and times. The average number of nuclei and the percentage of dead cells were evaluated in treated embryos. Classification of dead cells was based on morphological assessment of their nuclei evaluated by fluorescence microscopy, the detection of specific DNA degradation (TUNEL assay), the detection of active caspase-3 and cell viability assessed by propidium iodide staining. The addition of both apoptotic inductors into culture media significantly increased cell death incidence in blastocysts. Their effects were dose and time dependent. Lower concentrations of inductors increased cell death incidence, usually without affecting embryo growth after 24 h culture. Higher concentrations of inductors caused wider cell damage and also retarded embryo development. In all experiments, the negative effect of actinomycin D on blastomere survival and blastocyst growth was greater than the effect of TNFα. Furthermore, the addition of actinomycin D into culture media increased cell death incidence even after 6 h culture. Differences resulted probably from diverse specificity of apoptotic inductors. The majority of dead cells in treated blastocysts were of apoptotic origin. Morphological and biochemical features of apoptotic cell death induced by both TNFα and actinomycin D were similar and had homologous profile. In blastomeres, similarly to somatic cells, the biochemical pathways of induced apoptosis included activation of caspase-3 and internucleosomal DNA fragmentation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3972-3972
Author(s):  
George T. Roberts ◽  
Muhammad A. Chishti ◽  
Fallah H. Al-Mohanna ◽  
Raafat M. El-Sayed ◽  
Abderezak Bouchama

Abstract Introduction: Ultrastructural evidence of endothelial cell (EC) injury has been associated with diffuse microvascular thrombosis in human heatstroke (HS). In vitro studies have also shown that heat stress accelerates apoptotic cell death. Using a recently described baboon model of heatstroke, we sought to examine pathological changes in the vascular endothelium and whether apoptosis is a mechanism of endothelial cell death. Hypothesis: Major structural vascular endothelium alterations occur in HS and apoptosis is a mechanism of endothelial cell death in HS. Methods: Anesthetized baboons (Papio hamadyras) were heat-stressed in a neonatal incubator maintained at 44 1.5 °C, until rectal temperature attained 42.5°C (moderate heatstroke; n =4) or systolic blood pressure fell to < 90 mm Hg (severe heatstroke n =4). Animals were resuscitated with normal saline and allowed to cool at room temperature. Four sham-heated animals served as control group. Spleen, liver, heart, kidney, gut, lung and adrenal tissue were obtained either by immediate autopsy in non-survivors or after euthanasia at 72-h for survivors. Vascular endothelium ultrastructure was evaluated by transmission electron microscopy (TEM) of ultra-thin tissue sections. Biological activity of EC was determined by light microscopy (LM) using a polyclonal antibody targeting von Willebrand Factor (vWF). Apoptosis was assessed, also in tissue sections, by deoxyuridine triphosphate nick end-labeling (TUNEL) procedure. Results: In heatstroke animals, there were marked EC changes in lungs, spleen, jejunum, kidneys and liver, demonstrated by TEM, as increased cytoplasmic membrane convolutions that included formation of villi projecting into the vessel lumina, and increase in the width of the gaps between ECs. Migration of neutrophils, platelets and erythrocytes through these widened gaps was noted. Weibel-Palade bodies were increased both in size and number in EC of jejunum, lungs and kidneys. This increase correlated with increased endothelial expression of immunologically detectable vWF. TEM also showed that there was increased apoptosis manifested by nuclear chromatin condensation and karyorrhexis and formation of cytoplasmic myelin whorls. Increased EC apoptosis was also observed by TUNEL in the jejunum, lungs, liver and spleen. All these changes were greater in animals with severe HS than in animals with moderate HS, whereas sham heated control animals showed no significant changes. Conclusion: Widespread EC injury with apoptotic cell death is consistent with the hypothesis that the endothelium may play a pathogenic role in heatstroke.


2008 ◽  
Vol 20 (1) ◽  
pp. 176
Author(s):  
D. X. Zhang ◽  
X. H. Shen ◽  
X. S. Cui ◽  
N.-H. Kim

MicroRNAs (miRNAs) are small (~22 nucleotides) non-coding RNA molecules that can regulate gene expression by base-pairing with fully or partially sequence-complementary target mRNAs. Hundreds of miRNAs have been identified in various multicellular organisms and many miRNAs are evolutionarily conserved. While miRNAs play an important role in animal development, little is known about their biological function during early mammalian development. In order to obtain insight into the role of miRNAs in early embryogenesis, we first determined the expression levels of three apoptosis-related miRNAs, miR-15a, -16, and -21 in mouse preimplantation embryos using TaqMan� MicroRNA Assays. Five embryos of each developmental stage were snap-frozen and amplified by stem-loop RT primer and TaqMan Universal PCR Master Mix (Applied Biosystems Inc., Foster City, CA, USA). The miRNA concentrations (10–X) in embryo samples were calculated by standard curve from synthetic lin-4 miRNA and the absolute copy number per embryo was obtained based on the formula of 6.02 � 10(8–X). All three miRNAs had low expression levels from the zygote to the 8-cell stage and were up-regulated thereafter. In general, among the three miRNAs, miR-15a exhibited the lowest expression in preimplantation embryos, while miR-16 exhibited the highest. Because of the low levels of miRNA-15a, we determined developmental ability and apoptosis of embryos following microinjection of miRNA-15a. The microinjection of miR-15a into zygotes did not affect embryo development up to the blastocyst stage (miR-15a, 90 � 4.5% v. buffer 94.6 � 5.8%); however, it did induce a significant degree of apoptosis (P < 0.05; Tukey's multiple range test). Furthermore, the expression levels of miR-15a and -16 were increased in microinjected blastocysts compared to the control group (copy number per blastocyst, miR-15a, 6991 � 1223 v. 3098 � 592; miR-16, 196216 � 958 v. 133514 � 6059). Real-time RT-PCR data showed that the gene expression levels of the housekeeping gene GAPDH, the anti-apoptotic gene Bcl-xL, and the miRNA pathway-related genes GW182 and Dicer remained unchanged in miR-15a-injected blastocysts compared to the control group. In contrast, the expression of the stem cell-specific transcriptional factor Oct-4 (fold change, 1.451 � 0.12), the pro-apoptotic gene Bax (1.418 � 0.12), and Caspase 3 (1.314 � 0.19) were significantly increased in microinjected blastocysts. In addition, treatment of 2-cell embryos with 600 µm H2O2 induced apoptosis and increased the expression level of miR-16 at the blastocyst stage (P < 0.05). Taken together, the changes in the expression levels of miR-15a, -16, and -21 in various embryonic developmental stages indicate a possible role for them in early embryogenesis. Furthermore, the high expression levels of miR-15a and miR-16 seem to be linked to apoptosis in blastocyst-stage embryos; this may be due to an increase in the expression of pro-apoptotic genes.


2012 ◽  
Vol 56 (2) ◽  
pp. 211-216 ◽  
Author(s):  
Ján Bystriansky ◽  
Ján Burkuš ◽  
Štefan Juhás ◽  
Dušan Fabian ◽  
Juraj Koppel

Abstract High plasma urea nitrogen concentration has been proposed as an important factor contributing to the decline in reproductive parameters of domestic animals. The aim of this study was to evaluate the effect of urea on the development of preimplantation embryos in a mouse model. During in vivo tests, acute renal failure (ARF) accompanied by hyper-uraemia was induced by intramuscular administration of glycerol (50%) into hind limbs of fertilised dams. During in vitro tests, embryos collected from healthy dams were cultured in a medium with the addition of various concentrations of urea from the 4-cell stage to the blastocyst stage. Stereomicroscopic evaluation and fluorescence staining of embryos obtained from dams with ARF showed that high blood urea is connected with an increase in the number blastocysts containing at least one apoptotic cell and in the incidences of dead cells per blastocyst, but it did not affect their ability to reach the blastocyst stage. In vitro tests showed that culture of embryos with urea at concentration of 10 mM negatively affected the quality of obtained blastocysts. Blastocysts showed significantly lower numbers of cells and increased incidence of dead cells. An increase in apoptosis incidence was observed even in blastocysts obtained from cultures with 5 mM urea. Urea at concentrations 50 mM and higher negatively affected the ability of embryos to reach the blastocyst stage and the highest used concentrations (from 500 mM) caused overall developmental arrest of embryos at the 4- or 5- cell stage. These results show that elevated levels of urea may cause changes in the microenvironment of developing preimplantation embryos, which can negatively affect their quality. Embryo growth remains un-affected up to very high concentrations of urea.


Reproduction ◽  
2008 ◽  
Vol 135 (5) ◽  
pp. 649-656 ◽  
Author(s):  
D J Kwon ◽  
C K Park ◽  
B K Yang ◽  
H T Cheong

We attempted to control the nuclear remodelling of somatic cell nuclear transfer embryos (NTs) and examined their subsequent development and DNA methylation patterns in pigs. Porcine foetal fibroblasts were fused to enucleated oocytes treated with either 5 mM caffeine for 2.5 h or 0.5 mM vanadate for 0.5 h. After activation, NTs were cultured in vitro for 6 days to examine their development. The nuclear remodelling type of the reconstituted embryos was evaluated 1 h after fusion. Methylated DNA of in vitro-fertilised (IVF) embryos and NTs at various developmental stages and of donor cells was detected using a 5-methylcytosine (5-MeC) antibody. Caffeine-treated NTs induced premature chromosome condensation at a high rate (P<0.05), whereas most vanadate-treated NTs formed a pronucleus-like structure. Although cleavage rates to the two-cell stage did not differ among groups, delayed cleavage was observed in the vanadate-treated group. The blastocyst formation rate was significantly reduced by vanadate treatment compared with caffeine-treated and non-treated (control) NT groups (P<0.05). The apoptotic cell index of NT blastocysts was lower in the caffeine-treated group than in other groups (P<0.05). The methylation patterns were similar among NTs, but more hypermethylated DNA was observed at the four-cell stage of control and vanadate-treated NTs when compared with that in IVF embryos (P<0.05). Thus, the nuclear remodelling type controlled by caffeine or vanadate treatment can affect in vitro development and the methylation status of NTs in relation to nuclear reprogramming.


Reproduction ◽  
2020 ◽  
Vol 160 (2) ◽  
pp. 181-191 ◽  
Author(s):  
Satoko Kanzaki ◽  
Shiori Tamura ◽  
Toshiaki Ito ◽  
Mizuki Wakabayashi ◽  
Koji Saito ◽  
...  

Nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing proteins (NRLPs) are central components of the inflammasome. Accumulating evidence has shown that a reproductive clade of NRLPs is predominantly expressed in oocyte to cleavage stage embryos and participates in mammalian preimplantation development as a component of a multiprotein complex known as the subcortical maternal complex (SCMC). Nlrp9s belong to the reproductive class of NLRPs; Nlrp9b is unique in acting as an inflammasome against rotavirus in intestines. Here we generated mice carrying mutations in all three members of the Nlrp9a/b/c gene (Nlrp9 triple mutant (TMut) mice). When crossed with WT males, the Nlrp9 TMut females were fertile, but deliveries with fewer pups were increased in the mutants. Consistent with this, blastocyst development was retarded and lethality to the preimplantation embryos increased in the Nlrp9 TMut females in vivo. Under in vitro culture conditions, the fertilized eggs from the Nlrp9 TMut females exhibited developmental arrest at the two-cell stage, accompanied by asymmetric cell division. By contrast, double-mutant (DMut) oocytes (any genetic combination) did not exhibit the two-cell block in vitro, showing the functional redundancy of Nlrp9a/b/c. Finally, Nlrp9 could bind to components of the SCMC. These results show that Nlrp9 functions as an immune or reproductive NLRP in a cell-type-dependent manner.


2006 ◽  
Vol 18 (2) ◽  
pp. 189
Author(s):  
I.-S. Hwang ◽  
J.-S. Seo ◽  
H.-S. Park ◽  
S.-W. Kim ◽  
D.-H. Kim ◽  
...  

Apoptosis is a form of cell death leading to fragmentation of the DNA, shrinkage of the cytoplasm, membrane changes, and cell death without lysis or damage to neighboring cells. It might contribute to the low developmental rate of in vitro-produced (IVP) embryos, but apoptosis in porcine embryos is still unclear. This study investigated the effect of sucrose in the culture medium on the development of porcine NT and IVP embryos. Oocytes were aspirated from the follicles in ovaries collected from a local abattoir, and then matured in TCM-199 for 40-44 h. Fresh semen was diluted and equilibrated at 16�C. A final concentration of motile spermatozoa was adjusted to 5 � 105 cells/mL in fertilization medium. Fetal fibroblast cells were prepared from a 35-day-old porcine fetus and used as donor cells. Embryos were cultured in PZM-3 supplemented with 0.05 M sucrose for 2 days, and then cultured in the PZM-3 without sucrose for 4 days at 38.5�C under 5% CO2 in air. Apoptotic cell death was analyzed by using a terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick-end labeling (TUNEL) assay. All data were subjected to a generalized linear model procedure (PROC-GLM) of the statistical analysis system (SAS; SAS Institute, Inc., Cary, NC, USA). NT and IVF embryos cultured in the medium supplemented with sucrose showed a significantly higher blastocyst formation rate than those cultured with no addition (28.8 vs. 20% and 32.3 vs. 17.9%; P < 0.05, respectively). For apoptosis, both NT and IVF embryos cultured in the medium with sucrose showed significantly lower frequency of apoptosis compared to embryos cultured in the medium without sucrose (3.4 vs. 6.3% and 0.6 vs. 1.8%; P < 0.05, respectively). Finally, the number of nuclei in NT blastocysts cultured in the medium with sucrose was higher than that of NT blastocysts cultured without sucrose (30.8 vs. 25.5; P < 0.05, respectively). However, the number of nuclei in the IVF blastocysts was not significantly different between groups. These results indicate that sucrose addition may increase the development of porcine NT and IVF embryos to the blastocyst stage and decrease the rate of apoptotic cells.


Biologia ◽  
2012 ◽  
Vol 67 (4) ◽  
Author(s):  
Mária Kovalská ◽  
Marián Hruška-Plocháň ◽  
Oľga Østrup ◽  
Marian Adamkov ◽  
Ján Lehotský ◽  
...  

AbstractCommon features of embryonic genome activation in mammalian and non-mammalian embryos are the colocalization of pre-assembled complexes of maternally inherited nucleolar proteins, the so-called nucleolus precursor bodies and de novo synthesized transcripts with ribosomal DNA. The de novo transcription of messenger RNA and ribosomal RNA proteins is required for the development of functional nuclei during the major activation of the embryonic genome. The aim of our work was to investigate to what extent. Autoradiography and transmission electron microscopy has been applied in in vitro produced bovine embryos. The embryos were cultured to the late 8-cell stage with: α-amanitin; a specific inhibitor of RNA-polymerases II and III transcription; actinomycin D; a specific inhibitor of RNA polymerase I transcription; and without inhibitors (control group). Nucleoplasm and nucleolar structures displayed strong autoradiographic labeling and showed the initial development of fibrillo-granular nucleoli in the control group. In α-amanitin groups, however, in both inhibited groups of embryos, lack of autoradiographic labeling and disintegrated nucleolus precursor bodies stage were observed. Our study of α-amanitin as well as in actinomycin D groups proves inhibition of transformation nucleolus precursor bodies to active nucleoli. From our results follows, actinomycin D is able to penetrate through zona pellucida, what was shown for the first time.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e19016-e19016 ◽  
Author(s):  
Mala Kiran Talekar ◽  
Junior Hall ◽  
Gerald B Wertheim ◽  
Daniel Martinez ◽  
Joshua E. Allen ◽  
...  

e19016 Background: Our group has previously shown preclinical in vitro efficacy of novel small molecule, ONC201 across several pediatric NHL cell lines (Talekar et al, 2015) as a monoagent as well as in combination with chemotherapy agents, significantly cytarabine and bortezomib. We investigated the preclinical efficacy of ONC201 and bortezomib combination in vivo in a NHL mouse xenograft model. Methods: Burkitt’s lymphoma cell line (Ramos) transduced with lentiviral GFP was utilized to establish subcutaneous flank xenografts in 5-7 week(wk) old immunodeficient SCID mice [NOD.Cg- Prkdcscid Il2rgtm1Wjl/SzJ]. All tumors were established by Day 10, detected by bioluminescent imaging and were serially imaged x1/wk. Mice were studied in 4 treatment arms (7 mice per arm) as tabulated in the table. Results: Mice in Arms 1, 2 & 3 had continued tumor growth and were humanely euthanized during Wk 3- 4 of treatment when the tumor volume reached the maximum allowable size per the approved institutional IACUC protocol. Mice in Arm 4 showed gross tumor necrosis and had to be euthanized in Wk 4. Upon treatment initiation, 2 mice in each arm were sacrificed at 48 and 72 hours respectively and tumor samples harvested for histology and IHC analysis (TRAIL and CHOP/GADD). Histological analysis revealed that the control group had predominantly viable tumor cells at both 48 & 72 H. The monoagent groups showed minimal cell death with bortezomib alone and modest cell death with ONC201 as monoagent in clustered regions. In contrast, the combination group showed: i) extensive global tumor necrosis with nuclear debris on H&E, ii) prominent TRAIL induction by IHC analysis, and, iii) significant apoptotic cell death accompanied by CHOP /GADD overexpression indicating potential ER stress. Induction of these pharmacodynamic markers in Arm 4 were evident at 48H and more prominent at the 72H. Conclusions: ONC201 effectively synergizes with bortezomib to cause apoptotic tumor cell death in pediatric NHL murine xenograft and merits further investigation. [Table: see text]


Reproduction ◽  
2010 ◽  
Vol 139 (5) ◽  
pp. 857-870 ◽  
Author(s):  
D Tesfaye ◽  
A Regassa ◽  
F Rings ◽  
N Ghanem ◽  
C Phatsara ◽  
...  

This study was conducted to investigate the effect of suppressing transcription factor geneMSX1on the development ofin vitroproduced bovine oocytes and embryos, and identify its potential target genes regulated by this gene. Injection of long double-stranded RNA (LdsRNA) and small interfering RNA (siRNA) at germinal vesicle stage oocyte reducedMSX1mRNA expression by 73 and 37% respectively at metaphase II stage compared with non-injected controls. Similarly, injection of the same anti-sense oligomers at zygote stage reducedMSX1mRNA expression by 52 and 33% at 8-cell stage compared with non-injected controls. Protein expression was also reduced in LdsRNA- and siRNA-injected groups compared with non-injected controls at both stages. Blastocysts rates were 33, 28, 20 and 18% in non-injected control, scrambled RNA (scRNA), LdsRNA- and siRNA-injected groups respectively. Cleavage rates were also significantly reduced in Smartpool siRNA (SpsiRNA)-injected group (53.76%) compared with scRNA-injected group (57.76%) and non-injected control group (61%). Large-scale gene expression analysis showed that 135 genes were differentially regulated in SpsiRNA-injected group compared with non-injected controls, of which 54 and 81 were down- and up-regulated respectively due to suppression ofMSX1. Additionally, sequence homology mapping and gene enrichment analysis with known human pathway information identified several functional modules that were affected due to suppression ofMSX1. In conclusion, suppression ofMSX1affects oocyte maturation, embryo cleavage rate and the expression of several genes, suggesting its potential role in the development of bovine preimplantation embryos.


Sign in / Sign up

Export Citation Format

Share Document