324 CELL LINES DERIVED FROM MAMMALIAN PARTHENOGENETIC EMBRYOS DISPLAY ABNORMAL CHROMOSOME COMPLEMENTS AND ABERRANT CENTRIOLE NUMBER

2010 ◽  
Vol 22 (1) ◽  
pp. 318
Author(s):  
T. A. L. Brevini ◽  
G. Pennarossa ◽  
A. Vanelli ◽  
G. Tettamanti ◽  
L. Bogliolo ◽  
...  

Mature oocytes can be activated in vitro, leading to the generation of parthenotes that will develop in culture forming blastocysts morphologically indistinguishable from those derived from fertilized eggs. Parthenotes have been used as a source of pluripotent cells that show the traditional features associated with their biparental counterpart: expression of totipotency markers, telomerase activity, embryoid body formation, in vitro differentiation and, in most cases, teratoma formation. However, many aspects still need to be elucidated and, in particular, little attention has been paid to the inci- dence of aneuploidy in these cells. Limited data available for parthenotes derived from different mammalian species indicate a high rate of aneuploidy, whichis consideredtobecaused by the lackofthe paternal contribution, because alterations of the centrosome are knowntolead to multipolar spindles that, in turn, cause aneuploid cells. In this study, we analyzed the rate of aneuploidy and centriole distribution (as a marker of centrosome anomalies) in pluripotent cell lines (pSC) previously derived in our laboratory from pig parthenogenetic embryos and in primary fibroblast cultures and sections obtained from sheep parthenogenetic fetuses (n = 3) that reached 24 days of development in vivo. This protocol was chosen to separate the effect related tooocyte activation from those of the procedures used to derive pSC lines. Centriole number and distribution were assessed both by immunocy- tochemical analysis using an anti-centrin-1 antibody (1 : 200, Abcam, Cambridge, UK) and an appropriate secondary antibody, and by ultrastructural evaluation of thin sections, using a Jeol 1010 EX electron microscope (Jeol, Tokyo, Japan). Karyotyping was performed on mitotically active cells. Metaphases were fully karyotyped under a Leica HC microscope (Wetzlar, Germany). Images were then captured with a Leica DC250 digital camera and cells karyotyped using the Leica CW4000 Karyo software. The results obtained indicate that cell lines of parthenogenetic origin have, in all examined cases, an incidence of aneuploidy significantly higher than that of their respective controls. In particular, although the diploid configuration represented the modal value, the majority of the cells displayed a consistently lower number of chromosomes, between <1N (hypohaploid) and >1N to <2N (hypodiploid).This resultis possibly related toa lossofchromosomes during the mitotic process.Ahigher incidence ofmultiple centrioles was also detected, suggesting that aneuploidy may be related to the lack of paternal contribution that results in abnormal centrosome formation, incorrect control of the process of spindle rearrangement, and consequent chromosomal malsegregation.Abnormal segregation and multicentriolar distribution were not limited to parthenogenetic cell lines but was observed in parthenotes as well, indicating that culture artifacts are unlikely to be the cause. PUR 2007, PUR 2008.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e23512-e23512
Author(s):  
Susan Tsang ◽  
Nino Carlo Rainusso ◽  
Jason Todd Yustein

e23512 Background: Osteosarcoma is the most common pediatric bone cancer and a key genetic characteristic of this particular malignancy is its complex karyotype. Specifically it has been reported that 40% of osteosarcoma patients’ present with 8q24 amplification. The presence of this specific amplification has been previously associated with a high rate of relapse and poor prognosis for osteosarcoma patients. Within this amplicon resides, a long non-coding RNA gene, PVT-1. Prior studies indicates that PVT-1 has pro-oncogenic properties however the function of PVT-1 in osteosarcoma is not well characterized. Methods: To understand PVT-1 copy number, Fluorescent In Situ Hybridization was performed on both osteosarcoma cell lines and osteosarcoma patient-derived xenografts. In addition the PVT-1 RNA level is elevated in a majority of osteosarcoma samples compared to normal bone. To test PVT-1 pro-oncogenic role in osteosarcoma, several functional assays were performed. Results: Our studies demonstrated that overexpression of PVT-1 in osteosarcoma cell lines promotes multiple tumorigenic behaviors including enhanced proliferation, migration, invasion and chemotherapeutic resistance to cisplatin. PVT-1’s ability to mediate metastasis and contribute to chemotherapeutic sensitivity is a shared phenotype of cancer stem cells. Based on this observation, we hypothesize targeting PVT-1 will reduce cancer stem-cell properties. Osteosarcoma lines with increased levels of PVT-1 exhibited higher expression of cancer stem cell genes: Nanog, SOX2, c-Myc, and Oct4 at both the transcriptomic and proteomic level. In Vitro and In Vivo self-renewal capacity studies showed enhanced osteosarcoma cell self-renewal in the PVT-1 overexpression cohort. Additional molecular studies were performed in order to gain additional insights into potential mechanism of action for PVT-1 including Reverse Phase Protein Array. Initial analysis suggest a role for PVT-1 in regulating the PI3K-AKT-TSC2 pathway. Conclusions: This suggests a potential oncogenic pathway in which PVT-1 enhances cancer stem cell phenotypes. On-going investigations are addressing potential PI3K/TSC2 pathway inhibitors, BEZ-2335 and LY3023414, which could be utilized to regulate PVT-1 mediated tumorigenic roles and cancer stem-like properties.


2018 ◽  
Author(s):  
Anurag Sethi ◽  
Mengting Gu ◽  
Emrah Gumusgoz ◽  
Landon Chan ◽  
Koon-Kiu Yan ◽  
...  

AbstractEnhancers are important noncoding elements, but they have been traditionally hard to characterize experimentally. Only a few mammalian enhancers have been validated, making it difficult to train statistical models for their identification properly. Instead, postulated patterns of genomic features have been used heuristically for identification. The development of massively parallel assays allows for the characterization of large numbers of enhancers for the first time. Here, we developed a framework that uses Drosophila STARR-seq data to create shape-matching filters based on enhancer-associated meta-profiles of epigenetic features. We combined these features with supervised machine learning algorithms (e.g., support vector machines) to predict enhancers. We demonstrated that our model could be applied to predict enhancers in mammalian species (i.e., mouse and human). We comprehensively validated the predictions using a combination of in vivo and in vitro approaches, involving transgenic assays in mouse and transduction-based reporter assays in human cell lines. Overall, the validations involved 153 enhancers in 6 mouse tissues and 4 human cell lines. The results confirmed that our model can accurately predict enhancers in different species without re-parameterization. Finally, we examined the transcription-factor binding patterns at predicted enhancers and promoters in human cell lines. We demonstrated that these patterns enable the construction of a secondary model effectively discriminating between enhancers and promoters.


Zygote ◽  
2005 ◽  
Vol 13 (2) ◽  
pp. 125-137 ◽  
Author(s):  
A.V. Makarevich ◽  
P. Chrenek ◽  
N. Žilka ◽  
J. Pivko ◽  
J. Bulla

Microinjection (Mi) of gene constructs into pronuclei of fertilized eggs is a widely used method to generate transgenic animals. However, the efficiency of gene integration and expression is very low because of the low viability of reconstructed embryos resulting from cell fragmentation and cleavage arrest. As a consequence, only a few viable embryos integrate and express transgene. Since cellular fragmentation and cleavage stage arrest in embryos may be associated with apoptosis, we aimed to test the hypothesis that the low viability of Mi-derived eggs is caused by a high rate of apoptosis in embryos, as a result of the detrimental effect of Mi. Pronuclear stage eggs (19–20 hours post-coitum, hpc) were microinjected with several picolitres of DNA construct into the male pronucleus (gene-Mi); the intact eggs (non-Mi) or eggs microinjected with phosphate-buffered saline (PBS-Mi) served as controls. Epidermal growth factor (EGF; 0, 20 and 200 ng/ml) was added to the culture medium and the embryos were cultured up to 94–96 hpc. Apoptosis was detected using the TUNEL assay, and the ultrastructure was analysed using electron microscopy of Durcupan ACM thin sections of the embryo. Gene-Mi embryos had significantly lower (p<0.05) blastocyst yields and a higher percentage of cleavage-arrested embryos than those in the non-Mi group. In gene-Mi groups, approximately 40% of all cleavage-stage-arrested embryos had fragmented blastomeres. Both gene-Mi-and PBS-Mi-derived blastocysts had a significantly higher TUNEL index (p<0.001) and lower total cell number (p<0.05) than the non-Mi embryos. Comparison of the quality of gene-Mi embryos with that of PBS-Mi embryos indicated that the deleterious effect of Mi on the embryo was caused by the Mi procedure itself, rather than DNA. EGF (at 20 ng/ml) had beneficial effects on the quality of gene-Mi-derived embryos, eliminating the influence of the Mi procedure on apoptosis and embryo cell number. Ultrastructural analysis confirmed a higher occurrence of apoptotic signs (nuclear membrane blebbing, areas with electron-dense material, numerous apoptotic bodies) in Mi-derived cleavage-arrested embryos compared with untreated or Mi-derived normal-looking embryos. These findings suggest an association between embryo cleavage arrest and apoptosis in Mi-derived embryos. Inclusion of EGF in the embryo culture medium can eliminate the detrimental effect of Mi on embryo quality.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 11100-11100
Author(s):  
P. Wu ◽  
C. Rosario ◽  
J. Paderova ◽  
R. Gladdy ◽  
M. Ko ◽  
...  

11100 Background: The pathogenesis of hepatocellular carcinoma (HCC) is multifactorial and includes genetic predisposition, though the precise nature of the latter is as yet poorly understood. Mice heterozygous for the polo like kinase Plk4 develop spontaneous HCC and human HCC cases show a high rate of LOH (loss of heterozygosity) at the Plk4 locus. We hypothesize that Plk4 is a haploinsufficient tumor suppressor in man. The purpose of this study was to investigate the mechanisms by which a 50% reduction of Plk4 leads to carcinogenesis. Methods: We established Plk4± and Plk4+/+ murine embryonic fibroblast cell lines (MEFs) in vitro. 5 of 5 Plk4+/+ MEF lines senesced at passage 7–8 as expected, while 9 of 9 Plk4±MEF lines immortalized in culture under NIH 3T3 protocol. The latter were used at passage 15–20 for in vivo tumorigenesis studies. Results: Plk4± MEFs demonstrated increased ploidy with increased passage number. By passage 4, Plk4± MEFs showed a near tetraploid karyotype as well as multiple chromosomal rearrangements and deletions, as assessed by Spectral Karyotype (SKY) Analysis. 5 out of 9 late passage Plk4± MEF lines injected into NOD-SCID mice grew tumors, with a latency of 3 to 12 weeks. By contrast, injection of Plk4+/+ MEFs yielded no tumors. Tumors generated from injection of Plk4± MEFs were harvested, cultured and submitted to SKY analysis; this showed increased clonal rearrangements and deletions compared to the parent cell lines. Conclusion: A 50% reduction in Plk4 expression results in immortalization, aneuploidy and chromosomal instability in vitro, and tumorigenicity in vivo. These results demonstrate that insufficient levels of Plk4, whether due to mutation or LOH, can contribute to the pathogenesis of HCC. No significant financial relationships to disclose.


2003 ◽  
Vol 77 (2) ◽  
pp. 1059-1068 ◽  
Author(s):  
L. Hanlon ◽  
N. I. Barr ◽  
K. Blyth ◽  
M. Stewart ◽  
P. Haviernik ◽  
...  

ABSTRACT The c-myb oncogene is a frequent target for retroviral activation in hemopoietic tumors of avian and mammalian species. While insertions can target the gene directly, numerous clusters of retroviral insertion sites have been identified which map close to c-myb and outside the transcription unit in T-lymphomas (Ahi-1, fit-1, and Mis-2) and monocytic and myeloid leukemias (Mml1, Mml2, Mml3, and Epi-1). Previous analyses showed no consistent effect of these insertions on c-myb expression, raising the possibility that other nearby genes were the true targets. In contrast, our analysis of four cell lines established from lymphomas bearing insertions at fit-1 (fti-1) (feline leukemia virus) and Ahi-1 (Moloney murine leukemia virus) shows that these display higher expression levels of c-myb RNA and protein compared to a panel of phenotypically similar cell lines lacking such insertions. An interesting feature of the cell lines with long-range c-myb insertions was that each also carried an activated Myc allele. The potential for oncogenic synergy between Myb and Myc in T-cell lymphoma was confirmed in transgenic mice overexpressing alleles of both genes in the T-cell compartment, lending further credence to the case for c-myb as the major target for long-range activation. In contrast, mapping and analysis of c-myb neighboring genes (HBS1 and FLJ20069) showed that the expression of these genes did not correlate well with the presence of proviral insertions. A possible explanation for the paradoxical behavior of c-myb was provided by one of the murine T-lymphoma lines bearing an insertion at Ahi-1 (p/m16i) that reproducibly down-regulated c-myb RNA and protein to very low levels or undetectable levels on prolonged culture. Our observations implicate c-myb as a key target of upstream and downstream retroviral insertions. However, overexpression may become dispensable during outgrowth in vitro, and perhaps during tumor progression in vivo, providing a potential rationale for the previously observed discordance between retroviral insertion and c-myb expression levels.


Author(s):  
Conly L. Rieder ◽  
S. Bowser ◽  
R. Nowogrodzki ◽  
K. Ross ◽  
G. Sluder

Eggs have long been a favorite material for studying the mechanism of karyokinesis in-vivo and in-vitro. They can be obtained in great numbers and, when fertilized, divide synchronously over many cell cycles. However, they are not considered to be a practical system for ultrastructural studies on the mitotic apparatus (MA) for several reasons, the most obvious of which is that sectioning them is a formidable task: over 1000 ultra-thin sections need to be cut from a single 80-100 μm diameter egg and of these sections only a small percentage will contain the area or structure of interest. Thus it is difficult and time consuming to obtain reliable ultrastructural data concerning the MA of eggs; and when it is obtained it is necessarily based on a small sample size.We have recently developed a procedure which will facilitate many studies concerned with the ultrastructure of the MA in eggs. It is based on the availability of biological HVEM's and on the observation that 0.25 μm thick serial sections can be screened at high resolution for content (after mounting on slot grids and staining with uranyl and lead) by phase contrast light microscopy (LM; Figs 1-2).


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i7-i7
Author(s):  
Jiaojiao Deng ◽  
Sophia Chernikova ◽  
Wolf-Nicolas Fischer ◽  
Kerry Koller ◽  
Bernd Jandeleit ◽  
...  

Abstract Leptomeningeal metastasis (LM), a spread of cancer to the cerebrospinal fluid and meninges, is universally and rapidly fatal due to poor detection and no effective treatment. Breast cancers account for a majority of LMs from solid tumors, with triple-negative breast cancers (TNBCs) having the highest propensity to metastasize to LM. The treatment of LM is challenged by poor drug penetration into CNS and high neurotoxicity. Therefore, there is an urgent need for new modalities and targeted therapies able to overcome the limitations of current treatment options. Quadriga has discovered a novel, brain-permeant chemotherapeutic agent that is currently in development as a potential treatment for glioblastoma (GBM). The compound is active in suppressing the growth of GBM tumor cell lines implanted into the brain. Radiolabel distribution studies have shown significant tumor accumulation in intracranial brain tumors while sparing the adjacent normal brain tissue. Recently, we have demonstrated dose-dependent in vitro and in vivo anti-tumor activity with various breast cancer cell lines including the human TNBC cell line MDA-MB-231. To evaluate the in vivo antitumor activity of the compound on LM, we used the mouse model of LM based on the internal carotid injection of luciferase-expressing MDA-MB-231-BR3 cells. Once the bioluminescence signal intensity from the metastatic spread reached (0.2 - 0.5) x 106 photons/sec, mice were dosed i.p. twice a week with either 4 or 8 mg/kg for nine weeks. Tumor growth was monitored by bioluminescence. The compound was well tolerated and caused a significant delay in metastatic growth resulting in significant extension of survival. Tumors regressed completely in ~ 28 % of treated animals. Given that current treatments for LM are palliative with only few studies reporting a survival benefit, Quadriga’s new agent could be effective as a therapeutic for both primary and metastatic brain tumors such as LM. REF: https://onlinelibrary.wiley.com/doi/full/10.1002/pro6.43


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii201-ii202
Author(s):  
Miranda Tallman ◽  
Abigail Zalenski ◽  
Amanda Deighen ◽  
Morgan Schrock ◽  
Sherry Mortach ◽  
...  

Abstract Glioblastoma (GBM) is a malignant brain tumor with nearly universal recurrence. GBM cancer stem cells (CSCs), a subpopulation of radio- and chemo-resistant cancer cells capable of self-renewal, contribute to the high rate of recurrence. The anti-cancer agent, CBL0137, inhibits the FACT (facilitates chromatin transcription) complex leading to cancer cell specific cytotoxicity. Here, we show that CBL0137 sensitized GBM CSCs to radiotherapy using both in vitro and in vivo models. Treatment of CBL0137 combined with radiotherapy led to increased DNA damage in GBM patient specimens and failure to resolve the damage led to decreased cell viability. Using clonogenic assays, we confirmed that CBL0137 radiosensitized the CSCs. To validate that combination therapy impacted CSCs, we used an in vivo subcutaneous model and showed a decrease in the frequency of cancer stem cells present in tumors as well as decreased tumor volume. Using an orthotopic model of GBM, we confirmed that treatment with CBL0137 followed by radiotherapy led to significantly increased survival compared to either treatment alone. Radiotherapy remains a critical component of patient care for GBM, even though there exists a resistant subpopulation. Radio-sensitizing agents, including CBL0137, pose an exciting treatment paradigm to increase the efficacy of irradiation, especially by inclusively targeting CSCs.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Farnaz Dabbagh Moghaddam ◽  
Iman Akbarzadeh ◽  
Ehsan Marzbankia ◽  
Mahsa Farid ◽  
Leila khaledi ◽  
...  

Abstract Background Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells. Hemolysis, apoptosis, cell cytotoxicity, invasion and migration of selected concentrations of melittin, and melittin-loaded niosome were evaluated on 4T1 and SKBR3 cells using hemolytic activity assay, flow cytometry, MTT assay, soft agar colony assay, and wound healing assay. Real-time PCR was used to determine the gene expression. 40 BALB/c inbred mice were used; then, the histopathology, P53 immunohistochemical assay and estimate of renal and liver enzyme activity for all groups had been done. Results This study showed melittin-loaded niosome is an excellent substitute in breast cancer treatment due to enhanced targeting, encapsulation efficiency, PDI, and release rate and shows a high anticancer effect on cell lines. The melittin-loaded niosome affects the genes expression by studied cells were higher than other samples; down-regulates the expression of Bcl2, MMP2, and MMP9 genes while they up-regulate the expression of Bax, Caspase3 and Caspase9 genes. They have also enhanced the apoptosis rate and inhibited cell migration, invasion in both cell lines compared to the melittin samples. Results of histopathology showed reduce mitosis index, invasion and pleomorphism in melittin-loaded niosome. Renal and hepatic biomarker activity did not significantly differ in melittin-loaded niosome and melittin compared to healthy control. In immunohistochemistry, P53 expression did not show a significant change in all groups. Conclusions Our study successfully declares that melittin-loaded niosome had more anti-cancer effects than free melittin. This project has demonstrated that niosomes are suitable vesicle carriers for melittin, compare to the free form.


Sign in / Sign up

Export Citation Format

Share Document