6 Immunological aspects of ovarian follicle ovulation and corpus luteum formation in cattle

2021 ◽  
Vol 33 (2) ◽  
pp. 110
Author(s):  
N. A. Al Rabiah ◽  
A. C. O. Evans ◽  
J. McCormack ◽  
J. A. Browne ◽  
P. Lonergan ◽  
...  

Ovarian follicle ovulation and subsequent luteinization have been described as a controlled inflammatory event, comprising tissue damage and repair. To elaborate this further in cattle, the contribution of immune cells to dominant follicle luteinization, ovulation, and corpus luteum formation was investigated. Ovulation in beef heifers was synchronized using an 8-day progesterone-based synchronization program. Heifers were slaughtered at a local abattoir at 5 timepoints (T): (T1) 24h before ovulation (n=10); (T2) 2h before ovulation (n=9); (T3) 6h after ovulation (n=10); (T4) 24h after ovulation (n=10); (T5) 72h after ovulation (n=10), and ovarian tissue was collected and returned to the laboratory on ice. Follicular fluid, theca, granulosa, and corpus luteum (CL) tissues were recovered by dissection and processed for analysis. The concentrations of a panel of cytokines were measured using an antibody-conjugated magnetic bead immunoassay. The abundance of T-lymphocytes, mast cells, neutrophils, eosinophils, monocytes, macrophages, and dendritic cells was determined by immunohistochemistry. The mRNA relative abundance of candidate genes, including angiogenic growth factors, adhesion factors, chemokines and cytokines, was determined by quantitative real-time PCR analysis. The resulting datasets were analysed using the linear mixed model procedure of SAS and data are presented as least squares means; reported differences were deemed significant at P≤0.05. The cytokines IFNy, IP-10, IL-10, IL-36RA, MCP-1, MIP-1a, MIP-1b, and VEGF-A were detected in follicular fluid. The concentrations (pg mL−1) of IL-10 and VEGF-A were significantly higher in T1 follicular fluid samples compared with T2 (7.70 vs. 0.86 and 2193.33 vs. 293.93, respectively). Although dendritic cells were the most abundant cells in bovine ovulatory follicular and early corpus luteum tissue at all time points (P<0.05), their numbers peaked in ovulatory (T2) thecal tissue (261.5 cells/mm2). The greatest number of neutrophils was identified in thecal tissue at T1 (45/mm2); thereafter, their numbers declined to 1.1/mm2 in CL tissue by T5. Similarly, the numbers of T-lymphocytes, mast cells, monocytes, and macrophages declined in CL tissue at T4 and T5. Candidate gene mRNA expression profiles appeared to be time- and tissue-specific; for example, IFNA was highest in the preovulatory granulosa tissue (T1), IL8 was highest in peri-ovulatory thecal tissue (T2), VEGFA and MMP9 were highest in the early CL tissue (T4 and T5), MMP1, TIMP1, and VCAM1 expression was highest in theca, granulosa, and CL tissue collected on or after ovulation (T2, T4, T5), expression of the prostaglandin-related genes PTGES and PTGS2 was lowest in CL tissue, and that of PTGIS was highest. The current findings support the hypothesis that ovulation in heifers is characterised by an initial proinflammatory cascade followed by a dramatic switch to tissue repair, growth, and remodelling, all occurring within a 72-h period and commencing with the LH surge. Our results highlight the roles of neutrophils, dendritic cells, and macrophages as the key actors in this process.

Reproduction ◽  
2021 ◽  
Author(s):  
Noof Abdulrahman Alrabiah ◽  
Alexander C O Evans ◽  
Alan G Fahey ◽  
Niamh Cantwell ◽  
Patrick Lonergan ◽  
...  

Ovulation has been described as an inflammatory event, characterized by an influx of leukocytes into the ovulatory follicle and changes in the expression of immune factors in both the theca and granulosa tissue layers. Since information on this process is limited in cattle, our objective was to elucidate the contribution of the immune system to dominant follicle luteinization, ovulation and corpus luteum formation in cattle. Beef heifers (n=50) were oestrous synchronized, slaughtered and ovarian follicular or luteal tissue collected during a 96h window around ovulation. Follicular fluid cytokine concentration, temporal immune cell infiltration and inflammatory status were determined by Luminex multiplex analysis, immunohistochemistry and quantitative real time PCR-analysis, respectively, in pre- and peri-ovulatory follicular tissues. The concentrations of CXCL10 and VEGF-A were highest in pre-ovulatory follicular fluid samples. The pre and peri -ovulatory follicles play host to a broad repertoire of immune cells, including T-cells, granulocytes and monocytes. Dendritic cells were the most abundant cells in ovulatory follicular and luteal -tissue at all times. The mRNA expression of candidate genes associated with inflammation was highest in pre- and peri-ovulatory tissue, whereas tissue growth and modelling factors were highest in the post-ovulatory follicular and early luteal tissue. In conclusion, ovulation in cattle is characterized by the presence of neutrophils, macrophages and dendritic cells in the ovulatory follicle, reflected in compartmentalized cytokine and growth factor expression. These findings indicate a tightly regulated sterile inflammatory response to the LH surge in the ovulatory follicle which is rapidly resolved during early corpus luteum formation.


2014 ◽  
Vol 28 (7) ◽  
pp. 1039-1054 ◽  
Author(s):  
Adva Cohen-Fredarow ◽  
Ari Tadmor ◽  
Tal Raz ◽  
Naama Meterani ◽  
Yoseph Addadi ◽  
...  

Ovulation and inflammation share common attributes, including immune cell invasion into the ovary. The present study aims at deciphering the role of dendritic cells (DCs) in ovulation and corpus luteum formation. Using a CD11c-EYFP transgenic mouse model, ovarian transplantation experiments, and fluorescence-activated cell sorting analyses, we demonstrate that CD11c-positive, F4/80-negative cells, representing DCs, are recruited to the ovary under gonadotropin regulation. By conditional ablation of these cells in CD11c-DTR transgenic mice, we revealed that they are essential for expansion of the cumulus-oocyte complex, release of the ovum from the ovarian follicle, formation of a functional corpus luteum, and enhanced lymphangiogenesis. These experiments were complemented by allogeneic DC transplantation after conditional ablation of CD11c-positive cells that rescued ovulation. The pro-ovulatory effects of these cells were mediated by up-regulation of ovulation-essential genes. Interestingly, we detected a remarkable anti-inflammatory capacity of ovarian DCs, which seemingly serves to restrict the ovulatory-associated inflammation. In addition to discovering the role of DCs in ovulation, this study implies the extended capabilities of these cells, beyond their classic immunologic role, which is relevant also to other biological systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samina Shabbir ◽  
Prerona Boruah ◽  
Lingli Xie ◽  
Muhammad Fakhar-e-Alam Kulyar ◽  
Mohsin Nawaz ◽  
...  

AbstractOvary development is an important determinant of the procreative capacity of female animals. Here, we performed genome-wide sequencing of long non-coding RNAs (lncRNAs) and mRNAs on ovaries of 1, 3 and 8 months old Hu sheep to assess their expression profiles and roles in ovarian development. We identified 37,309 lncRNAs, 45,404 messenger RNAs (mRNAs) and 330 novel micro RNAs (miRNAs) from the transcriptomic analysis. Six thousand, seven hundred and sixteen (6716) mRNAs and 1972 lncRNAs were significantly and differentially expressed in ovaries of 1 month and 3 months old Hu sheep (H1 vs H3). These mRNAs and target genes of lncRNAs were primarily enriched in the TGF-β and PI3K-Akt signalling pathways which are closely associated with ovarian follicular development and steroid hormone biosynthesis regulation. We identified MSTRG.162061.1, MSTRG.222844.7, MSTRG.335777.1, MSTRG.334059.16, MSTRG.188947.6 and MSTRG.24344.3 as vital genes in ovary development by regulating CTNNB1, CCNA2, CDK2, CDC20, CDK1 and EGFR expressions. A total of 2903 mRNAs and 636 lncRNAs were differentially expressed in 3 and 8 months old ovaries of Hu sheep (H3 vs H8); and were predominantly enriched in PI3K-Akt, progesterone-mediated oocyte maturation, estrogen metabolism, ovulation from the ovarian follicle and oogenesis pathways. These lncRNAs were also found to regulate FGF7, PRLR, PTK2, AMH and INHBA expressions during follicular development. Our result indicates the identified genes participate in the development of the final stages of follicles and ovary development in Hu sheep.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 578.1-579
Author(s):  
S. Schnitte ◽  
A. Fuchs ◽  
T. Funk ◽  
A. C. Pecher ◽  
D. Dörfel ◽  
...  

Background:Psoriasis is a frequent skin disease that can appear with an arthritic manifestation in approximately 30% of the cases [1]. The underlying excessive immune reaction caused by pro-inflammatory cytokines can be triggered by several risk factors [2]. Various subgroups of Dendritic cells (DCs) in the skin play a crucial role in the induction of the dermal inflammatory response [3].Objectives:As the role of peripheral blood DCs remains unknown and the cause of an arthritic manifestation is still not completely understood [4], this project aimed to detect differences in phenotype or function of peripheral blood DCs in psoriatic patients with or without arthritis.Methods:We analyzed peripheral blood cells of 60 psoriasis patients with and without arthritis. Different DC subpopulations were detected by flow cytometry. Monocyte-derived DCs were cultured with or without Lipopolysaccharides to gain immature (iDC) and mature (mDC) cells. The DC phenotype was determined by staining with CD80, CD83, CD86, CD206, CCR7, CD1a, HLA-DR, CD40, GPN-MB, DC209 and CD14. Their T-cell stimulatory capability was analyzed by co-incubation with Carboxyfluorescein succinimidyl ester stained lymphocytes and the quantification of CD4+ T-lymphocytes afterwards. To measure the migration capacity DCs were seated into transwell chambers with a semipermeable membrane and partly supplemented with Macrophage Inflammatory Protein 3 Beta (Mip3b). Migrated cells were detected by flow cytometry. Measured cell counts were normalized to cell counts without Mip3b stimulation.Results:Comparing the factor of increase of migrated mDC counts due to mip3b stimulation, we detected a significant lower rate in samples of patients with arthritis (PsA) compared to those of patients without (Ps). Assays of mDCs without mip3b stimulation showed a significant higher count of migrated cells in the samples of the arthritic group [Figure 1]. Cell counts with Mip3b stimulation did vary slightly in the groups. The DC subpopulations and the expression of analyzed cell surface proteins did not show significant differences. The amounts of stimulated T-Lymphocytes did not differ significantly.Figure 1.Migration essay showing mDCs following Mip3b (+miß3b) as multiples of mDCs without stimulation (-mip3b). The factor of increase is significantly lower in patients with arthritis (PsA) compared to patients without (Ps). Absolute counts of migrated mDCs without Mip3b are significantly higher in the arthritic group. Cell counts with stimulation do not differ significantly (data not shown). N=24, p<0.05Conclusion:CCL19 (Mip3b) is a potent ligand to the CCR7 receptor inducing migration of DCs towards the lymphatic node [5]. The CCR7 amounts on the DC surface did not differ significantly in the groups. The mDCs without CCL19 stimulation migrated in higher amounts in samples of arthritic patients. Cell counts of stimulated DCs showed only slight differences. These results could be generated by a different appearance of the DCs of arthritic patients that might facilitate migration. Further experiments focusing on this aspect should be performed. A possible effect of disruptive factors (age, sex, medication…) needs to be clarified.References:[1]Henes, J.C., et al.,High prevalence of psoriatic arthritis in dermatological patients with psoriasis: a cross-sectional study.Rheumatol Int, 2014.34(2): p. 227-34.[2]Lee, E.B., et al.,Psoriasis risk factors and triggers.Cutis, 2018.102(5s): p. 18-20.[3]Kim, T.G., S.H. Kim, and M.G. Lee,The Origin of Skin Dendritic Cell Network and Its Role in Psoriasis.Int J Mol Sci, 2017.19(1).[4]Veale, D.J. and U. Fearon,The pathogenesis of psoriatic arthritis.Lancet, 2018.391(10136): p. 2273-2284.[5]Ricart, B.G., et al.,Dendritic cells distinguish individual chemokine signals through CCR7 and CXCR4.J Immunol, 2011.186(1): p. 53-61.Acknowledgments:This project was financially supported by Novartis Pharma GmbH.Disclosure of Interests:Sarah Schnitte Grant/research support from: Reaserch grant by Novartis, Alexander Fuchs: None declared, Tanja Funk: None declared, Ann-Christin Pecher: None declared, Daniela Dörfel: None declared, Jörg Henes Grant/research support from: Novartis, Roche-Chugai, Consultant of: Novartis, Roche, Celgene, Pfizer, Abbvie, Sanofi, Boehringer-Ingelheim,


2019 ◽  
Vol 5 (1) ◽  
pp. eaav0216 ◽  
Author(s):  
Mohammad Arifuzzaman ◽  
Yuvon R. Mobley ◽  
Hae Woong Choi ◽  
Pradeep Bist ◽  
Cristina A. Salinas ◽  
...  

Mast cells (MCs) are strategically distributed at barrier sites and prestore various immunocyte-recruiting cytokines, making them ideal targets for selective activation to treat peripheral infections. Here, we report that topical treatment with mastoparan, a peptide MC activator (MCA), enhances clearance ofStaphylococcus aureusfrom infected mouse skins and accelerates healing of dermonecrotic lesions. Mastoparan functions by activating connective tissue MCs (CTMCs) via the MRGPRX2 (Mas-related G protein-coupled receptor member X2) receptor. Peripheral CTMC activation, in turn, enhances recruitment of bacteria-clearing neutrophils and wound-healing CD301b+dendritic cells. Consistent with MCs playing a master coordinating role, MC activation also augmented migration of various antigen-presenting dendritic cells to draining lymph nodes, leading to stronger protection against a second infection challenge. MCAs therefore orchestrate both the innate and adaptive immune arms, which could potentially be applied to combat peripheral infections by a broad range of pathogens.


Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2497-2498
Author(s):  
Susumu Nakae ◽  
Keisuke Oboki ◽  
Hirohisa Saito

IgE/antigen-FcϵRI crosslinking promotes antigen internalization and apoptosis in mouse mast cells. Dendritic cells uptake the apoptotic mast cells carrying internalized antigens, and thus can efficiently present the antigens to memory T cells.


Blood ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 216-225 ◽  
Author(s):  
Anthony D. Cristillo ◽  
Mirtha J. Macri ◽  
Barbara E. Bierer

Abstract The chemokine superfamily consists of small (8-10 kDa) molecules that function to attract, selectively, different subsets of leukocytes. Binding of chemokines to their appropriate G-protein–coupled receptors is necessary for primary immune responses and for homing of leukocytes to lymphoid tissues. Here, we have characterized the signaling pathways in primary T lymphocytes that regulate chemokine gene induction using an RNase protection assay. Dependence on stimulation through the coreceptor CD28 and sensitivity to the calcineurin inhibitors cyclosporine and tacrolimus were studied using purified human peripheral blood lymphocytes. Lymphotactin (Ltn), macrophage inflammatory protein (MIP)–1α, and MIP-1β were all rapidly induced and sensitive to cyclosporine treatment. At later time points, the expression of MIP-1α and MIP-1β, but not of Ltn, was restored despite the inhibition of calcineurin activity. By contrast, the induction of interleukin-8 was delayed and was found to be cyclosporine insensitive. Calcineurin activity of IP-10 mRNA induction was contingent on the specific T-cell stimulation conditions, suggesting that IP-10 expression is modulated by calcineurin-dependent and -independent signaling pathways. Differential chemokine expression profiles result from the engagement of T-cell coreceptors and the requirement for, and the dependence on, calcineurin phosphatase activity.


Sign in / Sign up

Export Citation Format

Share Document