Soil N process inhibitors alter nitrogen leaching dynamics in a pumice soil

Soil Research ◽  
2008 ◽  
Vol 46 (4) ◽  
pp. 323 ◽  
Author(s):  
John C. Menneer ◽  
Stewart Ledgard ◽  
Mike Sprosen

A field lysimeter experiment, using a free-draining pumice soil, was carried out to investigate the effect of different soil nitrogen (N) process inhibitors on the fate of 15N-labelled cow urine. The treatments were a urease inhibitor (Agrotain; N-(n-butyl) thiophosphoric triamide), 2 nitrification inhibitors (dicyandiamide, DCD; 4-methylpyrazole, 4MP), a combination (DCD+Agrotain), a urine control, and a nil urine. The inhibitors were mixed with cow urine, which was then applied in a single application (equivalent to 775 kg N/ha) to lysimeters in autumn and monitored over the following 196 days. DCD and 4MP similarly reduced nitrate leaching by 59%, from 114 to 47 kg N/ha compared with the urine control. Of the DCD applied, 58% of it (8.7 kg/ha) was recovered in leachate, and represented an N loss of 5.8 kg/ha. The presence of Agrotain reduced ammonia (NH3-N) emissions by 64% (equivalent to 70 kg N/ha) over the short term (first 20 days), but led to large leaching losses of urea-N (25 kg N/ha) over the medium term (76 days). The Agrotain-DCD combination resulted in even larger losses of urea-N (45 kg N/ha). The major N component measured in leachate (below 450 mm) was ammonium-N, which constituted about 60% of the average total N (205 kg N/ha) leached. Ammonium-N leaching was rapid and almost entirely driven by macropore flow processes. Further research is required in deeper soil profiles, and in relation to climatic risk of high early rainfall on fresh urine patches, to determine the importance of macropore processes on N loss under typical on-farm soil conditions.

Soil Research ◽  
2000 ◽  
Vol 38 (1) ◽  
pp. 13 ◽  
Author(s):  
R. G. Silva ◽  
K. C. Cameron ◽  
H. J. Di ◽  
N. P. Smith ◽  
G. D. Buchan

A field lysimeter experiment was conducted to determine the effect of macropore flow on the transport of surface-applied cow urine N through soil. The lysimeters (500 mm diameter by 700 mm depth) used for this experiment were collected from Templeton fine sandy loam soil (Udic Ustochrept), which had been under ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) pasture for 9–10 years. The effect of macropore flow on urine-N leaching was determined by leaching experiments under 0.5 kPa and 0 kPa water tensions (suctions) imposed on top of the lysimeter using a disc tension infiltrometer. The 0.5 kPa suction prevented soil pores >600 µm diameter from conducting water and solutes, while the 0 kPa suction allowed conduction under ‘field saturated’ condition. Pores >600 µm diameter transmitted about 98% of the total nitrogen (N) leached below 700 mm depth. The main form of N transmitted under 0 kPa was ammonium (NH4 -N), accounting for 10.5% of the total N applied at 0 kPa suction. This was significantly higher than the amount of NH 4 -N leached at 0.5 kPa suction, which accounted for 0.17% of N applied. The urea-N in the leachate reached 16 mg/L at 0 kPa suction, and accounted for 1.6% of the total N applied. No urea was detected in the leachate at the 0.5 kPa suction. The concentrations and amounts of nitrate (NO3 -N) leached were very low and did not differ between the two suctions. The forms and amounts of N leached were affected by the interactions of macropore flow and N transformations in the soil, and the environmental conditions during the two leaching events. From this work, it is recommended that stock should be removed 1–2 days before irrigation water is applied as this will allow animal urine to diffuse into soil micropores and thus decrease N leaching by macropore flow.


1999 ◽  
Vol 39 (12) ◽  
pp. 257-264 ◽  
Author(s):  
Hans E. Andersen ◽  
Brian Kronvang ◽  
Søren E. Larsen

An empirical leaching model was applied to data on agricultural practices at the field level within 6 small Danish agricultural catchments in order to document any changes in nitrogen (N) leaching from the root zone during the period 1989-96. The model calculations performed at normal climate revealed an average reduction in N-leaching that amounted to 30% in the loamy catchments and 9% in the sandy catchments. The reductions in N leaching could be ascribed to several improvements in agricultural practices during the study period: (i) regulations on livestock density; (ii) regulations on the utilisation of animal manure; (iii) regulations concerning application practices for manure. The average annual total N-loss from agricultural areas to surface water constituted only 54% of the annual average N leached from the root zone in the three loamy catchments and 17% in the three sandy catchments. Thus, subsurface N-removal processes are capable of removing large amounts of N leached from agricultural land. An empirical model for the annual diffuse N-loss to streams from small catchments is presented. The model predicts annual N-loss as a function of the average annual use of mineral fertiliser and manure in the catchment and the total annual runoff from the unsaturated zone.


2008 ◽  
Vol 146 (4) ◽  
pp. 403-413 ◽  
Author(s):  
J. PETERSEN ◽  
P. SØRENSEN

SUMMARYManure production in the most livestock-intensive areas exceeds the crop demand for nutrients and legislative restrictions on application rate cause a shortage of land for manure application. Export of nutrients in the fibrous fraction of separated animal slurry has become an option for sustaining or increasing livestock production in livestock-intensive areas. The nitrogen (N) and carbon (C) losses during on-farm storage of the fibrous fraction, originating from separation of anaerobically digested pig slurry using the non-volatile elements phosphorus (P), copper (Cu) and zinc (Zn) as internal references, were calculated. In addition, the plant availability of N in fresh and stored fibrous fractions was evaluated in an incubation experiment. The losses of N and C were greater from the heap surface than from the centre, and turning the heap by reloading for transport increased the losses. The proportion of ammonium N, total N and C lost during storage of the fibrous fraction was 0·30–0·90, 0·10–0·55 and 0·35–0·70 of the initial amount, respectively. Storage reduced the plant-available N and the amount of residual organic N, thereby having long-term influence on soil fertility. The plant-available N in fresh fibrous fractions was 0·22–0·52 of total N, but decreased to 0·15–0·38 after storage due to a decrease of the Nammonium:Ntotal ratio during storage. The net mineralization of manure N was negatively related to the Ctotal:Norganic ratio. The fibrous fraction of separated pig slurry may be characterized as a manure with a high potential for loss and a variable value as fertilizer.


2019 ◽  
pp. 111-116
Author(s):  
H. Glenn Judson ◽  
Patricia M. Fraser ◽  
Michelle E. Peterson

Plantain (Plantago lanceolata L.) has the potential to indirectly reduce nitrate leaching from urine patches via compounds excreted in the urine of animals grazing the forb acting as biological nitrification inhibitors. Proof-of-concept research was previously undertaken using sheep urine, but it is important to examine whether this effect also occurs with cattle urine since cattle pose a greater N-leaching risk due to their higher urinary-N load. Housed dairy heifers (n=4) were assigned ad libitum dietary treatments of perennial ryegrass/ white clover or plantain for 14 days. On day 14, urine was collected through a sterile Foley catheter into a sealed container. Cattle then switched dietary treatment and urine was collected after a further 14 days. Urine samples were applied to soil microcosms and the net nitrification rate during a 35-day incubation determined. Similar urine-N concentrations were applied initially but a slower rate of soil nitrification was observed in the microcosms treated with urine from plantain-fed cows compared with those treated with urine from ryegrass/white clover-fed cows. The urine samples collected after the crossover showed a wider treatment difference in total N concentration, but also demonstrated a reduction in soil nitrification rate under the plantain urine. These results show similar trends to those previously reported for sheep urine.


Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 604 ◽  
Author(s):  
G. D. Schwenke ◽  
B. M. Haigh

Summer crop production on slow-draining Vertosols in a sub-tropical climate has the potential for large emissions of soil nitrous oxide (N2O) from denitrification of applied nitrogen (N) fertiliser. While it is well established that applying N fertiliser will increase N2O emissions above background levels, previous research in temperate climates has shown that increasing N fertiliser rates can increase N2O emissions linearly, exponentially or not at all. Little such data exists for summer cropping in sub-tropical regions. In four field experiments at two locations across two summers, we assessed the impact of increasing N fertiliser rate on both soil N2O emissions and crop yield of grain sorghum (Sorghum bicolor L.) or sunflower (Helianthus annuus L.) in Vertosols of sub-tropical Australia. Rates of N fertiliser, applied as urea at sowing, included a nil application, an optimum N rate and a double-optimum rate. Daily N2O fluxes ranged from –3.8 to 2734g N2O-Nha–1day–1 and cumulative N2O emissions ranged from 96 to 6659g N2O-Nha–1 during crop growth. Emissions of N2O increased with increased N fertiliser rates at all experimental sites, but the rate of N loss was five times greater in wetter-than-average seasons than in drier conditions. For two of the four experiments, periods of intense rainfall resulted in N2O emission factors (EF, percent of applied N emitted) in the range of 1.2–3.2%. In contrast, the EFs for the two drier experiments were 0.41–0.56% with no effect of N fertiliser rate. Additional 15N mini-plots aimed to determine whether N fertiliser rate affected total N lost from the soil–plant system between sowing and harvest. Total 15N unaccounted was in the range of 28–45% of applied N and was presumed to be emitted as N2O+N2. At the drier site, the ratio of N2 (estimated by difference)to N2O (measured) lost was a constant 43%, whereas the ratio declined from 29% to 12% with increased N fertiliser rate for the wetter experiment. Choosing an N fertiliser rate aimed at optimum crop production mitigates potentially high environmental (N2O) and agronomic (N2+N2O) gaseous N losses from over-application, particularly in seasons with high intensity rainfall occurring soon after fertiliser application.


2011 ◽  
Vol 347-353 ◽  
pp. 2302-2307 ◽  
Author(s):  
Hong Xiang Wang ◽  
Yi Shi ◽  
Jian Ma ◽  
Cai Yan Lu ◽  
Xin Chen

A field experiment was conducted to study the characteristics of non-point source nitrogen (N) in the surface runoff from sloping croplands and the influences of rainfall and cropland slope gradient. The results showed that dissolved total N (DTN) was the major form of N in the runoff, and the proportion occupied by dissolved inorganic nitrogen (DIN) ranged from 45% to 85%. The level of NH4+-N was generally higher than the level of NO3--N, and averaged at 2.50 mg·L-1and 1.07 mg·L-1respectively. DIN was positively correlated with DTN (R2=0.962). Dissolved organic N (DON) presented a moderate seasonal change and averaged at 1.40 mg·L-1. Rainfall amount and rainfall intensity significantly affected the components of DTN in the runoff. With the increase of rainfall amount and rainfall intensity, the concentrations of DTN, NH4+-N and NO3--N presented a decreased trend, while the concentration of DON showed an increased trend. N loss went up with an increase in the gradient of sloping cropland, and was less when the duration was longer from the time of N fertilization.fertilization.


1996 ◽  
Vol 1996 ◽  
pp. 212-212
Author(s):  
I.U. Haq ◽  
E. Owen

Urea-ammonia treatment of straws in the tropics involves mixing 1.0 kg of air dry straw with 1.0 kg of a 40 g/kg urea solution and storing under plastic for at least 4 weeks (Schiere and Ibrahim, 1989). The economics of treatment is dependent on the cost of urea. Treatment cost would reduce, if on-farm-produced urine, e.g. cow urine, could be used as a source of urea. However cow urine is dilute and may contain only 10 g/kg urea or less (Owen, 1993). The present study therefore investigated varying concentrations of urea solution for treating wheat straw at a tropical temperature.


2021 ◽  
Vol 8 (4) ◽  
pp. 2995-3005
Author(s):  
Hasbullah Syaf ◽  
Muhammad Albar Pattah ◽  
Laode Muhammad Harjoni Kilowasid

Earthworms (Pheretima sp.) could survive under abiotic stress soil conditions. Furthermore, their activities as ecosystem engineers allow for the creation of soil biostructures with new characteristics. Therefore, this study aimed to investigate the effect of the abundance of Pheretima sp. on the aggregate size, physicochemistry, and biology of the topsoil from the nickel mining area of Southeast Sulawesi, Indonesia. It was carried out by first grouping their abundance into zero, two, four, six, and eight individuals per pot and then carrying out tests. The Pheretima sp. were then released onto the surface of the topsoil and mixed with biochar that was saturated with tap water in the pot overnight. The results showed that the abundance of the species had a significant effect on the size class distribution, and aggregate stability of the soil. Furthermore, the size of the soil aggregates formed was dominated by the size class 2.83 - 4.75 mm under both dry and wet conditions. Under dry conditions, three size classes were found, while under wet conditions, there were five size classes. The results also showed that the highest and lowest stability indexes occurred with zero and eight Pheretima sp., respectively. Furthermore, the abundance had a significant effect on pH, organic C, total N, CEC, and total nematodes. However, it had no significant effect on the total P, C/N ratio, total AMF spores, and flagellate. The highest soil pH occurred with zero Pheretima sp., while with six and two members of the species, the total nematode was at its highest and lowest populations, respectively. Therefore, it could be concluded that the species was able to create novel conditions in the topsoils at the nickel mining area that were suitable for various soil biota.


2016 ◽  
Vol 6 (3) ◽  
pp. 58 ◽  
Author(s):  
Dominic J. Udoh ◽  
Otobong B. Iren ◽  
Jeremiah E. Jonathan

<p class="1Body">Two field experiments were conducted from 2012 to 2013 cropping seasons to evaluate the efficacy and also determine the optimum rates of application for fish pond waste water in comparison with three other manures including one inorganic fertilizer and two organic manures under garden egg (<em>Solanum spp.</em>) crop.Garden egg was fertilized with pond waste water (PW), poultry manure (PM), pig manure (PG) and NPK15:15:15 at equivalent nitrogen (N) rates (0, 150, 300, 450 kg/ha). The treatments were arranged in a split plot under randomized complete block design (RCBD).The results obtained indicated a slight drop in soil pH but soil OM, total N, available P, exchangeable Ca and K increased generally with increasing rates of manures. The PW and PG treatments supported significantly (P&lt;0.05) the highest yields of the crop compared to PM and NPK with the 150 and 300 kg/ha treatments recording the highest increase. These results have shown that under the high rainfall and acidic soil conditions of Akwa Ibom State in Nigeria, PW is useful for the improvement of soil conditions and achievement of higher crop yields when applied at rates that supply N in the range of 150 – 300 kg/ha.</p>


Sign in / Sign up

Export Citation Format

Share Document