Comparison of the effects of soil matric potential and isotropic effective stress on the germination of Lactuca sativa

Soil Research ◽  
1968 ◽  
Vol 6 (2) ◽  
pp. 179 ◽  
Author(s):  
N Collis-George ◽  
J Williams

The matric potential contributes positively to the isotropic effective stress operating in the solid framework of a soil system. Collis-George and Hector (1966) suggested that the matric potential may influence seed germination through its contribution to the effective stress in the solid framework surrounding the seed. Experiments are described which separate the effects of matric potential on seed germination into those that can be attributed to the free energy of the soil water and those that can be attributed to the effective stress in the soil system. The results clearly indicate that (1) seed germination is influenced by the isotropic effective stress in the solid framework of the soil system, and (2) the influence of matric potential on seed germination in the range 0 to - 400cm of water can be wholly attributed to the isotropic effective stress in the solid framework and not to the free energy of the soil water as defined by the matric potential. These conclusions are discussed in terms of the behaviour of other organisms in response to an applied matric potential.


Soil Research ◽  
1966 ◽  
Vol 4 (2) ◽  
pp. 145 ◽  
Author(s):  
N Collis-George ◽  
JB Hector

Experiments with Medicago tribuloides and Lactuca sativa confirm Sedgley's conclusion that the wetted area of contact is a factor controlling germination of the seed. The evidence suggests that this is of consequence at matric potentials near that of free water and is most important for germination of the last seeds in each population. Matric potential is shown to be an important factor in seed germination over and above its effect in controlling the wetted contact area of seed and medium. Prewetting the seed at matric potentials near that of free water for a few minutes increases the germination rate markedly and minimizes the normal effect of matric potential. The results and experimental conclusions are discussed and are shown to indicate the need for further investigation. They show that it is practicable to design experiments to distinguish the effects of the various facets of soil water energy on seed germination behaviour.



Irriga ◽  
2018 ◽  
Vol 1 (01) ◽  
pp. 246
Author(s):  
Lígia Borges Marinho ◽  
José Antonio Frizzone ◽  
João Batista Tolentino Júnior ◽  
Janaina Paulino ◽  
Danilton Luiz Flumigan ◽  
...  

DINÂMICA DA ÁGUA NO SISTEMA SOLO-PLANTA NO CULTIVO DA PIMENTA TABASCO SOB DÉFICIT HÍDRICO1  LÍGIA BORGES MARINHO2; JOSÉ ANTONIO FRIZZONE3; JOÃO BATISTA TOLENTINO JÚNIOR4; JANAÍNA PAULINO5; DANILTON LUIZ FLUMIGNAN6 E DIEGO BORTOLOTI GÓES3    (1) Artigo extraído da tese do primeiro autor (2) Departamento Tecnologia e Ciências Sociais, Universidade do Estado da Bahia, av. Edgard Chastinet, São Geraldo, CEP 48905-680, Juazeiro, BA. Fone (74) 3611-7363. E-mail: [email protected](3) Departamento de Engenharia de Biossistemas/Escola Superior de Agricultura “Luiz de Queiroz” USP, Av. Pádua Dias, 11, CEP 13.418-900, Piracicaba/SP, E-mail(s): [email protected], [email protected]; (4) Campus Curitibanos, Universidade Federal de Santa Catarina, Curitibanos, SC. [email protected] (5) Universidade Federal de Mato Grosso UFMT, campus Sinop, Avenida Alexandre Ferronato Nº 1.200. Bairro: Setor Industrial. CEP: 78.550-000,  Sinop-MT, Email: [email protected] (6) Empresa Brasileira de Pesquisa Agropecuária, Agropecuária Oeste. Rodovia BR 163, km 253, Zona Rural, 79804970 - Dourados, MS,  Email: [email protected]  1 RESUMO  O objetivo da pesquisa foi acompanhar a variação da condição hídrica do solo e da planta de pimenta ‘Tabasco’ em função dos manejos de déficits hídricos impostos e determinar seu coeficiente de estresse hídrico. O experimento foi conduzido em ambiente protegido, no Departamento de Engenharia de Biossistemas da ESALQ - USP, Piracicaba-SP, de setembro de 2009 a julho de 2010. O delineamento experimental foi blocos casualizados, com quatro repetições, utilizando-se lâminas de irrigação a 100, 80, 60 e 40% da evapotranspiração da cultura diferenciadas a partir da fase vegetativa e da fase reprodutiva. O potencial da água na folha e no solo foi aferido com a câmara de pressão e tensiômetros, respectivamente. Houve variação do potencial mátrico, da extração de água no solo e do potencial de água na folha em função das lâminas e das épocas de diferenciação. Menores potenciais mátricos foram verificados quando o déficit de irrigação foi inicializado na fase vegetativa da pimenta. Os valores de coeficiente de estresse hídrico e o potencial de água na folha, ao alvorecer, indicaram que as pimenteiras estavam sob estresse moderado e severo, sendo a época reprodutiva da pimenta Tabasco a mais sensível à restrição hídrica.Palavras-chave: Capsicum frutencens L, tensiômetro, potencial da água no solo.                                                        MARINHO, L. B.; FRIZZONE, J. A.; TOLENTINO JÚNIOR, J. B.; PAULINO, J.; FLUMIGNAN, D. L.; GÓES, D. B.WATER DYNAMICS IN SOIL-PLANT SYSTEM IN THE CULTIVATION OF PEPPER TABASCO UNDER WATER DEFICIT  2 ABSTRACT The objective of the research was to determine the change in soil water condition and in Tabasco pepper plant according to the managements of water deficits. The experiment was conducted in a greenhouse at the Department of Biosystems Engineering of ESALQ - USP, Piracicaba-SP, from September 2009 to July 2010. The experimental design was randomized blocks with four replications, using irrigation depths to 100, 80, 60 and 40% of crop evapotranspiration in the vegetative phase and reproductive phase. The soil matric potential was measured by tensiometers installed at 0-20 and 20-40 cm depth. The most negative values of matric potential occurred in treatments submitted to the greater water deficit treatments that had higher water restriction imposed by the vegetative phase. For these, greater increase in water extraction in the deepest layer (40 cm) were also found.There were differences in matric potential of the soil, in ground water extraction and in leaf water potential in relation to the water depths and differentiation phases. The deficit irrigation that started in the vegetative phase led to greater reduction in soil matric potential due to the accumulated water deficit. The pepper plants have moderate to severe sensitivity to water deficit in the soil, with a higher sensitivity of the plants when water restriction is imposed during reproductive stages than when it is imposed during growing stages. Keywords : Capsicum frutencens, tensiometer; soil water potential



1971 ◽  
Vol 24 (3) ◽  
pp. 423 ◽  
Author(s):  
JR Mcwilliam ◽  
PJ Phlllips

Under special conditions where soil-moisture diffusivity and seed-soil contact are non-limiting, the osmotic and matric potentials of the substrate were found to be equivalent in their effect on the germination of seeds of ryegrass and dehulled phalaris over a range of water potentials from 0 to -15 bars. However, with intact phalaris seeds it appears that the seed coat constitutes a large resistance to the absorption of soil water, and under these conditions the equivalence between osmotic and matric potential no longer holds, and results of germination under osmotic stress must be used with caution in predicting the germination behaviour of seeds in dry soil.



2010 ◽  
Vol 20 (3) ◽  
pp. 585-593 ◽  
Author(s):  
Ana Centeno ◽  
Pilar Baeza ◽  
José Ramón Lissarrague

Limited water supply in arid and semiarid Mediterranean environments demands improving irrigation efficiency. The purpose of this study was to determine a functional relationship between soil water availability and wine grape (Vitis vinifera) water status to determine a threshold value of soil matric potential to trigger irrigation. Seasonal trends of soil water potential, leaf water potential, and stomatal conductance (gS) of ‘Tempranillo’ wine grape were determined in two deficit irrigation treatments replenishing 45% and 30% of the reference evapotranspiration, and in a third non-irrigated treatment during 2001 and 2002. Soil water potential was measured with granular matrix soil moisture sensors placed at 0.3 m (Ψ0.3), 0.6 m (Ψ0.6), and 1.2 m (Ψ1.2) depths. The sensors at 0.3 m depth quickly responded to irrigation by increasing Ψ0.3 levels. At the 0.6 m depth, Ψ0.6 progressively decreased, showing significant differences between T1 and the rest of the treatments, while no significant differences in Ψ1.2 were found. All relationships between profile soil matric potential and leaf water potential and gS were highly correlated. After integrating our data with previous studies, we suggest a whole profile soil water potential value of –0.12 MPa as threshold to trigger irrigation and avoid severe water stress during berry growth.



1970 ◽  
Vol 50 (4) ◽  
pp. 363-370 ◽  
Author(s):  
AGUSTIN A. MILLAR ◽  
MURRAY E. DUYSEN ◽  
ENOCH B. NORUM

Total water potential of barley (Hordeum vulgare L.) leaves from plants grown under greenhouse and growth chamber conditions was divided into pressure and osmotic potential components, and their relationship to leaf relative water content was determined. Pressure potential approached zero at a water potential of about −32 bars, and a relative water content of about 65%. A change in the elasticity of leaves occurred at about 2 bars pressure potential and about −12 bars water potential. First visible wilting was observed between 75 and 80% relative water content. Transpiration decreased as leaf relative water content decreased but transpiration was independent of soil water content until about 16% (0.6 bar soil suction). First visible wilting of barley leaves was observed at soil water content between 9 and 13% (1–5 bars soil suction). Water potential and leaf relative water content decreased as the soil matric potential decreased. There was a shift to lower relative water content and water potential values as plants became older when the soil matric potential decreased.



Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1731 ◽  
Author(s):  
Michał Śpitalniak ◽  
Krzysztof Lejcuś ◽  
Jolanta Dąbrowska ◽  
Daniel Garlikowski ◽  
Adam Bogacz

Climate change induces droughts that are becoming more intensive and more frequent than ever before. Most of the available forecast tools predict a further significant increase in the risk of drought, which indicates the need to prepare solutions to mitigate its effects. Growing water scarcity is now one of the world’s leading challenges. In agriculture and environmental engineering, in order to increase soil water retention, soil additives are used. In this study, the influence of a newly developed water absorbing geocomposite (WAG) on soil water retention and soil matric potential was analyzed. WAG is a special element made from geotextile which is wrapped around a synthetic skeleton with a superabsorbent polymer placed inside. To describe WAG’s influence on soil water retention and soil matric potential, coarse sand, loamy sand, and sandy loam soils were used. WAG in the form of a mat was used in the study as a treatment. Three kinds of samples were prepared for every soil type. Control samples and samples with WAG treatment placed at depths of 10 cm and 20 cm were examined in a test container of 105 × 70 × 50 cm dimensions. The samples had been watered and drained, and afterwards, the soil surface was heated by lamps of 1100 W total power constantly for 72 h. Soil matric potential was measured by Irrometer field tensiometers at three depths. Soil moisture content was recorded at six depths: of 5, 9, 15, 19, 25, and 30 cm under the top of the soil surface with time-domain reflectometry (TDR) measurement devices. The values of soil moisture content and soil matric potential were collected in one-minute steps, and analyzed in 24-h-long time steps: 24, 48, and 72 h. The samples with the WAG treatment lost more water than the control samples. Similarly, lower soil matric potential was noted in the samples with the WAG than in the control samples. However, after taking into account the water retained in the WAG, it appeared that the samples with the WAG had more water easily available for plants than the control samples. It was found that the mechanism of a capillary barrier affected higher water loss from soil layers above those where the WAG had been placed. The obtained results of water loss depend on the soil type used in the profile.



2012 ◽  
Vol 32 (3) ◽  
pp. 467-478 ◽  
Author(s):  
José M. G. Beraldo ◽  
José E. Cora ◽  
Edemo J. Fernandes

The development of new methodologies and tools that enable to determine the water content in soil is of fundamental importance to the practice of irrigation. The objective of this study was to evaluate soil matric potential using mercury tensiometer and puncture digital tensiometer, and to compare the gravimetric soil moisture values obtained by tensiometric system with gravimetric soil moisture obtained by neutron attenuation technique. Four experimental plots were maintained with different soil moisture by irrigation. Three repetitions of each type of tensiometer were installed at 0.20 m depth. Based on the soil matric potential and the soil water retention curve, the corresponding gravimetric soil moisture was determined. The data was then compared to those obtained by neutron attenuation technique. The results showed that both tensiometric methods showed no difference under soil matric potential higher than -40 kPa. However, under drier soil, when the water was replaced by irrigation, the soil matric potential of the puncture digital tensiometer was less than those of the mercury tensiometer.



1962 ◽  
Vol 13 (4) ◽  
pp. 575 ◽  
Author(s):  
N Collis-George ◽  
JE Sands

The components of total soil moisture energy of consequence to a biological system are matric potential and osmotic potential. An experimental procedure, which allows the effects of the potentials to be considered independently, is described and discussed. Germination behaviour does not support the hypothesis that matric and osmotic potentials should have similar biological consequences because their free energy measurements are identical. The results support a diffusion phenomenon hypothesis with movement of solute from the soil solution through the cell membranes, so that any biological consequence is that of an internal "toxicity" rather than an osmotic "drought". For some osmotic systems, 100 cm of matric potential is as effective as 10 000 cm of osmotic potential in retarding seed germination rates.



1993 ◽  
Vol 41 (1) ◽  
pp. 119 ◽  
Author(s):  
M Battaglia

The seed germination response of seedlots from five geographically disparate provenances of Eucalyptus delegatensis to temperature, stratification, soil matric potential, relative humidity and interrupted imbibition was examined. The species was found to have a distinct temperature optimum of between 15 and 20°C, and a minimum temperature for germination of approximately 2°C. Short periods of exposure to high temperatures did not substantially affect germination performance. Stratification greatly increased the range of temperatures over which a high proportion of the seed germinated. Increases in the rate of germination with stratification are related to accrued thermal time during stratification. Pre-imbibing seeds at water potentials down to -2 MPa increased the rate of germination; however, no advantage was found after pre-imibibing at -3 MPa. This increased germination rate was associated with a shortening of the time to commencement of germination and more synchronous germination. Germination rate and germination capacity were impeded by soil matric potentials below -0.01 MPa, and germination was totally inhibited by soil matric potentials below -0.5 MPa. Soil matric potential and temperature interacted in their effects on germination capacity, and seeds germinating at near optimum temperatures were less sensitive to soil moisture stress. Seeds survived dehydration within 60 h of the commencement of imbibition, but were increasingly affected by dehydration thereafter. The rate of imbibition was influenced by the ambient temperature and solution water potential. At modest levels of water stress, imbibition was not impeded and the reduction in germination capacity was probably due to the inhibition of growth related processes. Differences in germination response were detected between the seedlots and these could be related to the geographic origin of the seedlots.



Sign in / Sign up

Export Citation Format

Share Document