A convective-dispersive-adsorptive flow model for solute transport in soils. I. Model description and some simulations

Soil Research ◽  
1981 ◽  
Vol 19 (1) ◽  
pp. 23 ◽  
Author(s):  
V Murali ◽  
LAG Aylmore

Solute transport predictions are usually based on mathematical (analytical and numerical) solutions of partial differential equations describing convective-dispersive-adsorptive flow and ion-soil interactions. In this paper computer simulations based on a numerical model of solute transport in soil columns have been used to illustrate the significance of flow dynamics and adsorption-desorption parameters in determining the shape and position of solute breakthrough curves. Approximating non-linear isotherms of the form S = KCM, where S is adsorption phase concentration, Cis solution phase concentration, and K and M are constants, by linear isotherms of the form S = KC + � where E is the intercept, to facilitate the use of analytical solutions. has been shown to result in significant errors when the retardation factor fails to account for the intercept � (when � is zero, the retardation factor equals 1 + �K/�, where � is the bulk density and � is water content). Using the dynamic form of Freundlich adsorption, the importance of non-linearity in the equilibrium isotherms is demonstrated. Computer simulations have also been used to demonstrate the extreme importance of intermittent flow, the simultaneous occurrence of adsorption dynamics, ionic fixation and hysteresis during instantaneous adsorption and desorption in determining the transport of solutes in soils.

2020 ◽  
Vol 57 (8) ◽  
pp. 1197-1214 ◽  
Author(s):  
Charles D. Shackelford ◽  
Catherine S. Hong

The results of eight cumulative mass column tests were analyzed via several different methods to evaluate the dispersion coefficient, D, and the retardation factor, Rd, governing the migration of chloride (Cl−), potassium (K), and zinc (Zn) through soil–bentonite backfills for vertical cutoff walls. Regression of the measured relative (effluent) concentration (RC) breakthrough curves (BTCs) resulted in relatively accurate determinations of Rd, but relatively inaccurate determinations of D for all three solutes. Values of Rd based on dimensionless time, T, corresponding to an RC of 0.5 were underestimated for all three solutes due to the significance of diffusion on solute transport. With a few exceptions, Rd for K and Zn based on analyses of the steady-state portions of measured cumulative mass ratio (CMR) BTCs and T – CMR BTCs were relatively accurate, whereas analysis of measured T – CMR BTCs was more accurate for determining Rd of Cl−. Overall, there is no advantage to analyzing the results of cumulative mass column tests in the form of RC BTCs, whereas the CMR and T – CMR BTCs offer the advantage of determining Rd based on simple linear regressions of the steady-state portions of the BTCs, i.e., provided steady-state solute transport has been established.


Soil Research ◽  
1981 ◽  
Vol 19 (3) ◽  
pp. 287 ◽  
Author(s):  
LAG Aylmore ◽  
V Murali

Comparisons have been made between experimental breakthrough curves for phosphate ions in soil columns and computer simulations of solute transport based on a number of different adsorption models. These include single component linear and non-linear, instantaneous and dynamic adsorption models; as well as the model incorporating a combination of instantaneous and time-dependent components suggested in Part I. While certain portions of the complete breakthrough curves for phosphate could be reasonably approximated using simple one-component models, these generally failed badly to describe the shape and position of the experimental data over the complete range of the breakthrough curve. This was even more evident when both adsorption and desorption phases were considered. On the other hand, the model described in Part I combining instantaneous linear and a simultaneous time-dependent (dynamic) Freundlich-type adsorption components provided a good simulation of the experimental data over the full range of the breakthrough curves for both adsorption and desorption phases. Of particular significance is the ability of the model to handle successive experimental breakthrough curves with different amounts of residual adsorption. A method for 'normalizing' the solute transport equations to facilitate computer simulations is presented.


2021 ◽  
Author(s):  
Nida Gul ◽  
Bushra Khan ◽  
Ishaq Ahmad Mian Kakakhel ◽  
Syed Muhammad Mukarram Shah ◽  
Muhammad Saeed ◽  
...  

Abstract The current study was to investigate the leaching and groundwater contamination potential of selected Dioxins, in local soil series. Solute transport was modelled through Breakthrough curve (BTC) plots, based on distribution coefficient (Kd), Retardation factor and Dispersivity, under normal velocity (20 cm day -1) and preferential or steady flow (50 cm day -1). In case of Dibenzo -p- Dioxin (DD), distribution coefficient values were found in order of Charsadda > Peshawar > Sultanpur series, while for 2 Chloro- p- Dioxin (2Cl-DD), the order was Charsadda > Sultanpur > Peshawar. However, the overall sorption was low. Under the normal velocity both of selected Dioxins (DD & 2Cl-DD), BTC plots relatively took longer time to reach the point of saturation as compared to high seepage velocity. However, the overall solute transport was found to be rapid. This behaviour showed that sorption of the Dioxins selected soil series is low and there is potential for leaching and groundwater contamination.


1992 ◽  
Vol 23 (2) ◽  
pp. 89-104 ◽  
Author(s):  
Ole H. Jacobsen ◽  
Feike J. Leij ◽  
Martinus Th. van Genuchten

Breakthrough curves of Cl and 3H2O were obtained during steady unsaturated flow in five lysimeters containing an undisturbed coarse sand (Orthic Haplohumod). The experimental data were analyzed in terms of the classical two-parameter convection-dispersion equation and a four-parameter two-region type physical nonequilibrium solute transport model. Model parameters were obtained by both curve fitting and time moment analysis. The four-parameter model provided a much better fit to the data for three soil columns, but performed only slightly better for the two remaining columns. The retardation factor for Cl was about 10 % less than for 3H2O, indicating some anion exclusion. For the four-parameter model the average immobile water fraction was 0.14 and the Peclet numbers of the mobile region varied between 50 and 200. Time moments analysis proved to be a useful tool for quantifying the break through curve (BTC) although the moments were found to be sensitive to experimental scattering in the measured data at larger times. Also, fitted parameters described the experimental data better than moment generated parameter values.


1991 ◽  
Vol 24 (2) ◽  
pp. 309-314 ◽  
Author(s):  
G. Teutsch ◽  
K. Herbold-Paschke ◽  
D. Tougianidou ◽  
T. Hahn ◽  
K. Botzenhart

In this paper the major processes governing the persistence and underground transport of viruses and bacteria are reviewed in respect to their importance under naturally occurring conditions. In general, the simulation of the governing processes is based on the macroscopic mass-conservation equation with the addition of some filter and/or retardation factor and a decay coefficient, representing the natural “die-off” of the microorganisms. More advanced concepts try to incorporate growth and decay coefficients together with deposition and declogging factors. At present, none of the reported concepts has been seriously validated. Due to the complexity of natural systems and the pathogenic properties of some of the microorganisms, experiments under controlled laboratory conditions are required. A laboratory setup is presented in which a great variety of natural conditions can be simulated. This comprises a set of 1 metre columns and an 8 metre stainless-steel flume with 24 sampling ports. The columns are easily filled and conditioned and therefore used to study the effects of different soil-microorganism combinations under various environmental conditions. In the artificial flume natural underground conditions are simulated using sand and gravel aquifer material from the river Neckar alluvium. A first set of results from the laboratory experiments is presented together with preliminary model simulations. The large variety of observed breakthrough curves and recovery for the bacteria and viruses under investigation demonstrates the great uncertainty encountered in microbiological risk assessment.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 510
Author(s):  
Majeda Khraisheh ◽  
Fares. Almomani ◽  
Gavin Walker

The separation of C3H4/C3H6 is one of the most energy intensive and challenging operations, requiring up to 100 theoretical stages, in traditional cryogenic distillation. In this investigation, the potential application of two MOFs (SIFSIX-3-Ni and NbOFFIVE-1-Ni) was tested by studying the adsorption–desorption behaviors at a range of operational temperatures (300–360 K) and pressures (1–100 kPa). Dynamic adsorption breakthrough tests were conducted and the stability and regeneration ability of the MOFs were established after eight consecutive cycles. In order to establish the engineering key parameters, the experimental data were fitted to four isotherm models (Langmuir, Freundlich, Sips and Toth) in addition to the estimation of the thermodynamic properties such as the isosteric heats of adsorption. The selectivity of the separation was tested by applying ideal adsorbed solution theory (IAST). The results revealed that SIFSIX-3-Ni is an effective adsorbent for the separation of 10/90 v/v C3H4/C3H6 under the range of experimental conditions used in this study. The maximum adsorption reported for the same combination was 3.2 mmolg−1. Breakthrough curves confirmed the suitability of this material for the separation with a 10-min gab before the lighter C3H4 is eluted from the column. The separated C3H6 was obtained with a 99.98% purity.


2017 ◽  
Vol 48 (1) ◽  
Author(s):  
Bahia & Naser

A laboratory experiment was carried out at the Department of Soil Sciences and Water Resources, College of Agriculture, University of Baghdad. Silty clay soil was treated with three salt solutions (NaCl, CaCl2 and mixed NaCl–CaCl2). Homogeneously packed soil columns (10 cm, 40 cm) were leached six times using tap water. Effluent samples were collected to determine ion concentration Cl-, Ca++, Na+, K+ and Mg++. Breakthrough curves were used to estimate solute transport parameters (retardation factor, peclet number) using an analytical solution of convection-dispersion equation (CDE) by CXTFIT program. The results showed that relative concentration of chloride was increased rapidly with calcium chloride, which increased sodium leaching rate at starting of breakthrough curve. Sodium chloride increased water requirements for calcium displacement. Results indicated a good fitting of convection-dispersion equation with breakthrough curves data. The best-fit were used to calculate peclet number, retardation factor and dispersion coefficient. When soil was treated with calcium chloride, Peclet number of chloride was increased from 3.13 to 6.48, while it has been decreased for calcium, sodium and potassium. Sodium chloride decreased peclet numbers of chloride, calcium and sodium. Also mixed salts increased sodium peclet number from 1.01 to 9.02. Results showed, calcium chloride decreased retardation factor of chloride from 1.59 to 0.50, while it has been increased from 1.39, 1.58 to 175.00, 493.36 for each of sodium and potassium, respectively. Retardation factor of calcium was decreased when soil was treated with sodium chloride or mixed salts. Dispersion coefficient was decreased for chloride, and increased for calcium and magnesium. When soil was treated with calcium chloride, dispersion coefficients have been increased from 24.29, 25.56 to 40.51, 40.89 cm2hr-1 for sodium and potassium, respectively.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1549 ◽  
Author(s):  
Haojie Liu ◽  
Bernd Lennartz

Over the past two decades, great efforts have been made to restore coastal wetlands through the removal of dikes, but challenges remain because the effects of flooding with saline water on water quality are unknown. We collected soil samples from two adjacent coastal fen peatlands, one drained and diked, the other open to the sea and rewetted, aiming at assessing the mobility and export of various compounds. Microcosm experiments with constant flow-through conditions were conducted to determine the effluent concentrations of dissolved organic carbon (DOC), ammonium ( NH 4 + ), and phosphate ( PO 4 3 − ) during saline–fresh water cycles. Sodium chloride (NaCl) was used to adjust salinity (saline water, NaCl concentration of 0.12 mol L−1; fresh water, NaCl concentration of 0.008 mol L−1) and served as a tracer. A model analysis of the obtained chloride ( Cl − ) and sodium ( Na + ) breakthrough curves indicated that peat soils have a dual porosity structure. Sodium was retarded in peat soils with a retardation factor of 1.4 ± 0.2 due to adsorption. The leaching tests revealed that water salinity has a large impact on DOC, NH 4 + , and PO 4 3 − release. The concentrations of DOC in the effluent decreased with increasing water salinity because the combination of high ionic strength (NaCl concentration of 0.12 mol L−1) and low pH (3.5 to 4.5) caused a solubility reduction. On the contrary, saline water enhanced NH 4 + release through cation exchange processes. The PO 4 3 − concentrations, however, decreased in the effluent with increasing water salinity. Overall, the decommissioning of dikes at coastal wetlands and the flooding of once drained and agriculturally used sites increase the risk that especially nitrogen may be leached at higher rates to the sea.


Sign in / Sign up

Export Citation Format

Share Document