320. THE ROLE OF FIZZY RELATED 1 IN MALE MEIOSIS

2010 ◽  
Vol 22 (9) ◽  
pp. 120
Author(s):  
L. Hopkins ◽  
V. Pye ◽  
B. Fraser ◽  
J. Holt ◽  
K. Jones ◽  
...  

Accurate chromosome segregation during mitosis and meiosis is facilitated by a regulatory complex known as the Anaphase Promoting Cyclosome (APC), an ubiquitin ligase complex that tags proteins with ubiquitin. Subsequently targeted proteins are recognised by the 26S proteosome and degraded. In mammalian cells, two temporally regulated co-activators are required for the APC to function; fizzy and fzr1. In studies of female oocyte development fzr1 has been demonstrated to play an important role in maintaining G2 arrest during meiosis by controlling spatial levels of the cell cycle protein Cyclin B1 but the role of Fzr1 in spermatogenesis remains unknown. Germ cell specific conditional knockout fzr1mice were generated using the DDX4-Cre and flox/flox fzr1 mouse lines and initial gross morphological analysis indicated that at 7 weeks of age null mice possessed significantly smaller testes (21.81mg ± 0.23mg) when compared to heterozygote (99.86mg ± 1.58mg) and wildtype littermates (93.06mg ± 1.16mg) n = 3 P < 0.0001. Quantitative gene expression analysis confirmed almost complete absence of fzr1 transcript in testes (20-fold decrease) in comparison to wild-type. Immunoblotting and immunohistochemistry revealed no expression of Fzr1 protein in meiotic and post meiotic germ cells when compared to heterozygote and wild type littermates. Histomorphological analysis of testes tissue sections revealed Fzr1 null males exhibited spermatogenic arrest and a complete absence of round spermatids with concomitant apoptosis in the residual spermatocytes. Epididymal examination confirmed a complete lack of mature spermatozoa in the cauda epididymis of null males. In contrast, both wild type and heterozygote mice displayed normal spermatogenesis and epididymal sperm analysis indicated no distinguishable differences in seminal characteristics with normal motility, morphology and sperm-zona binding capacity. Based on these observations we hypothesise that Fzr1 plays a significant role in the establishment and maintenance of meiosis possibly through regulation of key cell cycle proteins.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4178-4178
Author(s):  
Anna Lena Illert ◽  
Hiroyuki Kawaguchi ◽  
Corinna Albers ◽  
Melanie Sickinger ◽  
Ulrich Keller ◽  
...  

Abstract Abstract 4178 The regulated oscillation of protein expression is an essential mechanism of cell cycle control. The SCF class of E3 ubiquitin ligases is involved in this process by targeting cell cycle regulatory proteins for degradation by the proteasome, with the F-Box subunit of the SCF specifically recruiting a given substrate to the SCF core. We previously reported the cloning of NIPA (Nuclear Interaction Partner of ALK) in complex with constitutively active oncogenic fusions of ALK, which contributes to the development of lymphomas and sarcomas. Subsequently we characterized NIPA as a F-Box protein that defines an oscillating ubiquitin E3 ligase targeting nuclear cyclin B1 in interphase thus contributing to the timing of mitotic entry. Using a conditional knockout strategy we inactivated the gene encoding NIPA. NIPA-deficient animals are viable, but sterile due to a block of spermatogenesis. Moreover, our studies demonstrate that loss of NIPA has no substantive effect on the physiological cell cycle progression of primary MEFs indicating that this cell cycle checkpoint is inactive under optimal proliferation conditions. Interestingly, NIPA checkpoint control can be unmasked by oncogenic transformation by c-Myc. Here we show that transformed focus formation assays revealed highly significant differences in c-Myc-induced transformation in NIPA-deficient and wild-type MEFs. c-Myc transduction caused a pronounced upregulation of cyclin-B in NIPA-null MEFs, which was completely reversible by ectopic NIPA expression. The increased cyclin-B1 expression after c-Myc transduction in the absence of NIPA has considerable functional consequences for the cells: Focus formation ability of c-Myc-infected Nipa-/- MEFs was greatly reduced in comparison to wild-type MEFs (24.6% vs. 100%). Moreover, c-Myc expression caused 12.8% apoptotic subG1 cells in wild-type MEFs, whereas Nipa-/- MEFs were more affected by c-Myc-induced apoptosis (22.45%). Next, we sought to know, whether increased apoptosis in Nipa-deficient c-Myc transduced MEFs is dependent on a functional p53-Axis. Therefore, Nipa-wildtype and knockout MEFs were first infected with a retroviral Supernatant encoding for a p53Mir- and thereafter with the oncogene c-Myc. Interestingly the effect of Nipa knockout on c-Myc-mediated oncogenic transformation was totally abolished by the knock-down of p53. We observed no differences in focus formation ability or growth behaviour in Nipa-/- MEFs with inactivated p53 in comparison to wildtype cells, suggesting the importance of functional p53 in Nipa-induced cell death. Taken together, our data demonstrate that NIPA is required for efficient c-Myc transformation in a p53-dependent manner. Moreover, our results highlight the functional importance of the NIPA-p53 axis in cell cycle regulation and suggest that deregulation of the protein provides a substantial contribution during the process of tumorigenesis. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 25 (23) ◽  
pp. 10315-10328 ◽  
Author(s):  
Yukinori Minoshima ◽  
Tetsuya Hori ◽  
Masahiro Okada ◽  
Hiroshi Kimura ◽  
Tokuko Haraguchi ◽  
...  

ABSTRACT We identified CENP-50 as a novel kinetochore component. We found that CENP-50 is a constitutive component of the centromere that colocalizes with CENP-A and CENP-H throughout the cell cycle in vertebrate cells. To determine the precise role of CENP-50, we examined its role in centromere function by generating a loss-of-function mutant in the chicken DT40 cell line. The CENP-50 knockout was not lethal; however, the growth rate of cells with this mutation was slower than that of wild-type cells. We observed that the time for CENP-50-deficient cells to complete mitosis was longer than that for wild-type cells. Centromeric localization of CENP-50 was abolished in both CENP-H- and CENP-I-deficient cells. Coimmunoprecipitation experiments revealed that CENP-50 interacted with the CENP-H/CENP-I complex in chicken DT40 cells. We also observed severe mitotic defects in CENP-50-deficient cells with apparent premature sister chromatid separation when the mitotic checkpoint was activated, indicating that CENP-50 is required for recovery from spindle damage.


2021 ◽  
Author(s):  
Alisa K. White ◽  
Marybeth Baumgartner ◽  
Madisen F. Lee ◽  
Kyle D. Drake ◽  
Gabriela S. Aquino ◽  
...  

AbstractMutations in minor spliceosome component RNU4ATAC, a small nuclear RNA (snRNA), are linked to primary microcephaly. We have reported that in the conditional knockout (cKO) mice for Rnu11, another minor spliceosome snRNA, minor intron splicing defect in minor intron-containing genes (MIGs) regulating cell cycle resulted in cell cycle defects, with a concomitant increase in γH2aX+ cells and p53-mediated apoptosis. Trp53 ablation in the Rnu11 cKO mice did not prevent microcephaly. However, RNAseq analysis of the double knockout (dKO) pallium reflected transcriptomic shift towards the control from the Rnu11 cKO. We found elevated minor intron retention and alternative splicing across minor introns in the dKO. Disruption of these MIGs resulted in cell cycle defects that were more severe and detected earlier in the dKO, but with delayed detection of γH2aX+ DNA damage. Thus, p53 might also play a role in causing DNA damage in the developing pallium. In all, our findings further refine our understanding of the role of the minor spliceosome in cortical development and identify MIGs underpinning microcephaly in minor spliceosome-related diseases.


2019 ◽  
Vol 98 (10) ◽  
pp. 1150-1158 ◽  
Author(s):  
W. Chen ◽  
A. Alshaikh ◽  
S. Kim ◽  
J. Kim ◽  
C. Chun ◽  
...  

Oral mucosa provides the first line of defense against a diverse array of environmental and microbial irritants by forming the barrier of epithelial cells interconnected by multiprotein tight junctions (TJ), adherens junctions, desmosomes, and gap junction complexes. Grainyhead-like 2 (GRHL2), an epithelial-specific transcription factor, may play a role in the formation of the mucosal epithelial barrier, as it regulates the expression of the junction proteins. The current study investigated the role of GRHL2 in the Porphyromonas gingivalis ( Pg)–induced impairment of epithelial barrier functions. Exposure of human oral keratinocytes (HOK-16B and OKF6 cells) to Pg or Pg-derived lipopolysaccharides ( Pg LPSs) led to rapid loss of endogenous GRHL2 and the junction proteins (e.g., zonula occludens, E-cadherin, claudins, and occludin). GRHL2 directly regulated the expression levels of the junction proteins and the epithelial permeability for small molecules (e.g., dextrans and Pg bacteria). To explore the functional role of GRHL2 in oral mucosal barrier, we used a Grhl2 conditional knockout (KO) mouse model, which allows for epithelial tissue-specific Grhl2 KO in an inducible manner. Grhl2 KO impaired the expression of the junction proteins at the junctional epithelium and increased the alveolar bone loss in the ligature-induced periodontitis model. Fluorescence in situ hybridization revealed increased epithelial penetration of oral bacteria in Grhl2 KO mice compared with the wild-type mice. Also, blood loadings of oral bacteria (e.g., Bacteroides, Bacillus, Firmicutes, β- proteobacteria, and Spirochetes) were significantly elevated in Grhl2 KO mice compared to the wild-type littermates. These data indicate that Pg bacteria may enhance paracellular penetration through oral mucosa in part by targeting the expression of GRHL2 in the oral epithelial cells, which then impairs the epithelial barrier by inhibition of junction protein expression, resulting in increased alveolar tissue destruction and systemic bacteremia.


Blood ◽  
2000 ◽  
Vol 95 (8) ◽  
pp. 2645-2650 ◽  
Author(s):  
Lisa A. Porter ◽  
Gurmit Singh ◽  
Jonathan M. Lee

Abstract γ-Radiation is a potent inducer of apoptosis. There are multiple pathways regulating DNA damage-induced apoptosis, and we set out to identify novel mechanisms regulating γ-radiation–induced apoptosis in hematopoietic cells. In this report, we present data implicating the cyclin B1 protein as a regulator of apoptotic fate following DNA damage. Cyclin B1 is the regulatory subunit of the cdc2 serine/threonine kinase, and accumulation of cyclin B1 in late G2 phase of the cell cycle is a prerequisite for mitotic initiation in mammalian cells. We find that abundance of the cyclin B1 protein rapidly increases in several mouse and human hematopoietic cells (Ramos, DP16, HL60, thymocytes) undergoing γ-radiation–induced apoptosis. Cyclin B1 accumulation occurs in all phases of the cell cycle. Antisense inhibition of cyclin B1 accumulation decreases apoptosis, and ectopic cyclin B1 expression is sufficient to induce apoptosis. These observations are consistent with the idea that cyclin B1 is both necessary and sufficient for γ-radiation-induced apoptosis.


2005 ◽  
Vol 79 (4) ◽  
pp. 2597-2603 ◽  
Author(s):  
Yoon-Jae Song ◽  
Mark F. Stinski

ABSTRACT The human cytomegalovirus (HCMV) IE86 protein induces the human fibroblast cell cycle from G0/G1 to G1/S, where cell cycle progression stops. Cells with a wild-type, mutated, or null p53 or cells with null p21 protein were transduced with replication-deficient adenoviruses expressing HCMV IE86 protein or cellular p53 or p21. Even though S-phase genes were activated in a p53 wild-type cell, IE86 protein also induced phospho-Ser15 p53 and p21 independent of p14ARF but dependent on ATM kinase. These cells did not enter the S phase. In human p53 mutant, p53 null, or p21 null cells, IE86 protein did not up-regulate p21, cellular DNA synthesis was not inhibited, but cell division was inhibited. Cells accumulated in the G2/M phase, and there was increased cyclin-dependent kinase 1/cyclin B1 activity. Although the HCMV IE86 protein increases cellular E2F activity, it also blocks cell division in both p53+/+ and p53−/− cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 349-349
Author(s):  
Lina Li ◽  
Cynthia A. Presley ◽  
Bryan Kastl ◽  
Jose A. Cancelas

Abstract Contact between bone marrow (BM) hematopoietic stem cells (HSC) and osteoblast/stromal (OS) cells has been shown to be critical in the regulation of hematopoiesis. However, very little is known about the regulatory mechanisms of direct cell-to-cell communication in the hematopoietic microenvironment. BM cells are directly connected through gap junctions (GJs) which consist of narrow channels between contacting cells and are composed by connexins. Connexin 43 (Cx43) is expressed by BM OS cells. Multiple osteogenic defects have been reported in human Cx43 mutations and Cx43 has been shown to be essential in controlling osteoblast functions. Due to the perinatal death of Cx43 germline null mice, an interferon-inducible, conditional genetic approach (Mx1-Cre), expressed by both hematopoietic and stromal BM cells, was used to study the role of Cx43 in stem cell function. We have previously reported that Cx43 is critical for the interaction between stroma and HSC in CAFC assays (Cancelas J.A. et al., Blood 2000) and in adult hematopoiesis after 5-fluorouracil (5-FU) administration (Presley C, et al., Cell Comm. Adh., 2005). Here, we observed that after 5-FU administration, Cx43 expression is predominantly located in the endosteum. To study the role of stroma-dependent Cx43 in hematopoiesis, we developed hematopoietic chimeras by BM transplantation of wild-type Cx43 HSC into stromal Cx43-deficient mice. Stromal Cx43 deficiency induced a severe impairment of blood cell formation during the recovery phase after 5-FU administration compared to stromal Mx1-Cre-Tg wild-type controls (Table 1), as well as a significant decrease in BM cellularity (~60% reduction) and progenitor cell content (~83% reduction). Cell cycle analysis of 5-FU-treated BM progenitors from stromal Cx43-deficient mice showed an S-phase arrest (S phase: 63.5%; G2/M phase: <1%) compared to wild-type chimeric mice (S phase: 38.6%, G2/M phase: 7.8%, p=0.01) suggesting a cell division blockade. Unlike Cx43-deficient primary mice, a differentiation arrest at the HSC compartment was observed in 5-FU-treated, stromal Cx43-deficient mice, since the content of competitive repopulating units (CRU) at 1 month, of 14-day post-5-FU BM of stromal Cx43-deficient mice was increased (27.7 ± 0.67) compared to recipients of HSC from stromal wild-type counterparts (26.5 ± 0.92 CRU, p < 0.01). Interestingly, wild-type hematopoietic progenitor homing in stromal Cx43-deficient BM was severely impaired with respect to wild-type BM (5.1% vs10.4 %, respectively, p < 0.01), while hematopoietic Cx43-deficient BM progenitors normally homed into the BM, suggesting a differential role for Cx43 in stromal and HSC. In conclusion, expression of Cx43 in osteoblasts and stromal cells appears to play a crucial role in the regulation of HSC homing in BM and hematopoietic regeneration after chemotherapy. Peripheral blood counts of WT and stromal Cx43-deficient chimeric mice after 5-FU administration (150 mg/Kg) Neutrophil counts (×10e9/L) Reticulocyte count (%) Day post-5-FU WT Cx43-deficient WT Cx43-deficient * p < 0.05 Day +8 2.89 ± 0.06 0.81 ± 0.02* 2.0 ± 0.6 3.0 ± 0.9 Day +11 9.11 ± 2.5 3.13 ± 0.8* 6.1 ± 0.6 2.7 ± 0.3* Day +14 6.22 ± 5.7 7.58 ± 8.2 7.5 ± 0.5 2.5 ± 0.5*


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3361-3361
Author(s):  
Charlie Mantel ◽  
Sara Rhorabough ◽  
Ying Guo ◽  
Man-Ryul Lee ◽  
Myung-Kwan Han ◽  
...  

Abstract Ex-vivo expansion of human HSC prior to bone marrow transplantation is still an unrealized goal that could greatly extend the usefulness of this mainstay strategy for treating numerous human hematologic diseases. The safety of this process for potential use in humans depends in large part on the maintenance of karyotypic stability of HSC during expansion, a lack of which could contribute to serious, even fatal, complications such as cancer, and could also contribute to engraftment failure. The spindle checkpoint and its linkage to apoptosis initiation is one of the most important cellular processes that helps maintain chromosomal stability in rapidly proliferating cell populations by removing aneuploid and karyotypically abnormal cells via activation of cell death programs. Detailed understanding of the molecular regulation of this vital cell cycle checkpoint is important to maximize safety of in-vitro HSC expansion techniques. It is widely accepted that mammalian cells enter the next G1-phase with 4N DNA after slippage from prolonged drug-induced mitotic block caused by activation of the transient spindle checkpoint that it is from this state that polyploid/aneuploid cells initiate apoptosis. However, definitive biochemical evidence for G1 is scarce or unconvincing; in part because of methods of protein extraction required for immunoblot analysis that cannot take into account the cell cycle heterogeneity of cell cultures. We used single-cell-intracellular-flow-cytometric analysis to define important factors determining cell fate after mitotic slippage. Results from human and mouse embryonic stem cells that reenter polyploid cell cycles are compared to human somatic hematopoietic cells that die after MS. We now report for the first time that phosphorylation status of pRb, p53, CDK1, and cyclin B1 levels are important for cell fate/apoptosis decision in mitotic-slippage cells, which occurs in a unique, intervening, non-G1, tetraploid subphase. Hyperphosphorylated Rb was extremely abundant in mitotic-slippage cells, a cell signaling event usually associated with early G1-S phase transition. P53 was phosphorylated at sites known to be associated with apoptosis regulation. Cyclin A and B1 were undetectable in mitotic slippage cells; yet, CDK1 was phosphorylated at sites typically associated with its activation. Evidence is also presented raising the possibility of cyclin B1-independent CDK1 activity in mitotic-slippage cells. These findings challenge the current models of spindle checkpoint-apoptosis linkages. Our new model could have important implications for methods to maintain karyotypic stability during ex-vivo HSC expansion.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1390-1390
Author(s):  
Akil Merchant ◽  
Giselle Joseph ◽  
William Matsui

Abstract Hedgehog (Hh) signaling is essential for normal development and is dysregulated in many cancers. Hh signaling is active in normal bone marrow and the majority of acute myeloid leukemias, however, the precise role of Hh signaling and its positive effector Gli1 in normal or malignant hematopoiesis is not known. We have analyzed the bone marrow of Gli1 null mice to understand the role of this transcription factor in normal hematopoiesis in order to gain insight into its potential role in leukemia. Gli1 null mice develop normally and have normal peripheral blood counts but the bone marrow shows skewing of the c-Kit+Sca1+Lin-neg (KSL) progenitor compartment with increased CD34negKSL long-term HSC (LT-HSC) and decreased 34+KSL short-term HSC (ST-HSC). An analogous difference was observed in the c-Kit+Sca1negLinneg (KL) myeloid progenitor compartment with an increase in FcRγlowCD34+KL common myeloid progenitors (CMP) and decrease in the FcRγhighCD34+KL granulocyte monocyte progenitors (GMP). We speculated that these differences could be due to impaired cell cycle since both the ST-HSC and GMP are more proliferative than LT-HSC and CMP, respectively. Cell cycle analysis by DNA content and BrdU pulse labeling (100mg/kg IP 14 hours prior to analysis) revealed a marked decrease of proliferation in the LT-HSC, ST-HSC, CMP, and GMP compartments of Gli1 null mice. We supported this conclusion by demonstrating that the bone marrow of Gli1 null mice are relatively radio-resistant. Mice exposed to 400 cGy of total body irradiation followed with serial blood counts revealed less severe nadir, but delayed rebound of white blood cells in Gli1 null mice. We further hypothesized that although Gli1 appears to be dispensable for steady-state peripheral hematopoiesis, it might be necessary for rapid proliferation of progenitors needed during stressed hematopoiesis. In brain development, where Hh signaling is much better understood, active Hh signaling is critical for regulating proliferation of neural stem cells and Gli1 activity significantly increases after depletion of neural progenitors with chemotherapy (Bai et al., Development, 2002). To extend this observation to hematopoiesis, we treated Gli1 null mice and wild-type litter-mates with 5-fluorouracil (5-FU) at 100mg/kg and measured serial blood counts. Gli1 null mice had a delayed recovery of total white blood cells and neutrophil counts at 6 days after 5-FU, but this difference normalized by 20 days after treatment. To confirm that this difference was due to impaired proliferation and not increased sensitivity to 5-FU, we treated Gli1 null and wild-type mice with G-CSF (10mcg/kg/day) for three days to stimulate neutrophil proliferation. Confirming our hypothesis, we observed an attenuated neutrophil response in G-CSF stimulated Gli1 null mice. In summary, we have demonstrated that Gli1 loss leads to decreased HSC and myeloid progenitor proliferation, which has important functional consequences for stress hematopoiesis. These data suggest that abnormal Hh activity in leukemia may be important for driving the uncontrolled proliferation of cancer cells. Gli1 null mice were a kind gift from Alexandra Joyner, Memorial Sloan-Kettering Cancer Center


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2764-2764
Author(s):  
Douglas W. McMillin ◽  
Joseph Negri ◽  
Jake Delmore ◽  
Melissa G. Ooi ◽  
Jana Jakubikova ◽  
...  

Abstract Context: Novel therapeutic strategies targeting cell cycle regulation are attractive for multiple myeloma (MM) because of the increased proliferative index in advanced drug-resistant disease. Having previously studied the role of Cdk inhibition in MM, we have looked at the cell cycle-related polo kinases (PLKs), because their expression is associated with adverse prognosis in solid tumors. We report preclinical studies on the anti-MM activity of the PLK1/2/3 small molecule inhibitor BI2536. Methods/Results: We tested 39 human tumor cell lines by MTT colormetric assay, including MM (n=26), T-ALL (n=8), solid tumors (n=5), as well normal human tissues. BI2536 exhibited activity in the low nano-molar range with IC50 values &lt;10 nM for the most sensitive cells lines, which included several MM lines. BI2536 exhibited minimal activity against normal PBMCs, unstimulated or PHA-stimulated, with IC50 values greater than the highest dose tested (i.e. 80 nM). Myeloma cell lines were further tested in the presence and absence of exogenous IL-6 (10ng/mL) and IGF-1 (50ng/mL) and exhibited the ability to overcome the cytokine-induced resistance observed with other anti-MM agents (e.g. Dex or Doxo). Interestingly, several stromal responsive myeloma cell lines, including MM.1S, MM.1R, H929 and INA-6 were more sensitive to BI2536 in the presence of HS-5 stromal cells compared to the stromal unresponsive cell line OPM2, which was equally sensitive in the presence and absence of stromal cells. In addition, myeloma cell lines co-cultured with osteoclasts (OC) exhibited comparable activity in the presence and absence of OCs. Cell cycle analysis showed that treatment with BI2536 causes rapid G2/M arrest and increased G0/G1 phase events in KMS18 cells. Mechanistic studies revealed that Akt, MAPK, cyclin B1, cyclin D1 and cdk1 levels decrease in response to BI2536 treatment, while caspase-3 and PARP are cleaved within 8 hrs of drug treatment at 20 nM. Interestingly, Notch and phospho-histone H3 levels increased in response to treatment. Gene expression profiling analysis further validated the finding that BI2536 functions distinctly from other anti-MM agents, since there was not an effect on transcriptional signatures of proteasome, NF-kB or IRF4 activity following BI2536 treatment in KMS18 cells. In addition, higher doses of BI2536 preferentially killed side-population cells (SP cells) compared to the main population (MP), as shown by Hoechst staining. Importantly, immunohistochemisty revealed that MM.1S cells treated with BI2536 were unable to recruit alpha-tubulin to mitotic centrosomes and form bipolar spindles, which is compatible with the role of polo kinases in mitotic spindle formation. We also evaluated a series of combinations of this agent with conventional (e.g. dexamethasone, doxorubicin) and novel (e.g. bortezomib) anti-MM agents. No evidence of antagonism with any of these anti-MM agents was observed, indicating that combinations of BI2536 may be feasible in clinical settings with current anti-myeloma regimens. Conclusion: Proteins pivotal for cell cycle progression represent promising targets for treating highly proliferating tumors. Treatment of MM with a PLK inhibitor provides evidence that polo kinases are promising targets for MM therapy. Importantly, BI2536 activity was enhanced in the presence of stromal cells, providing evidence that this class of compounds will be active in the tumor microenvironment.


Sign in / Sign up

Export Citation Format

Share Document