scholarly journals Amelioration of inflammation and tissue damage in sickle cell model mice by Nrf2 activation

2015 ◽  
Vol 112 (39) ◽  
pp. 12169-12174 ◽  
Author(s):  
Nadine Keleku-Lukwete ◽  
Mikiko Suzuki ◽  
Akihito Otsuki ◽  
Kouhei Tsuchida ◽  
Saori Katayama ◽  
...  

Sickle cell disease (SCD) is an inherited disorder caused by a point mutation in the β-globin gene, leading to the production of abnormally shaped red blood cells. Sickle cells are prone to hemolysis and thereby release free heme into plasma, causing oxidative stress and inflammation that in turn result in damage to multiple organs. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is a master regulator of the antioxidant cell-defense system. Here we show that constitutive Nrf2 activation by ablation of its negative regulator Keap1 (kelch-like ECH-associated protein 1) significantly improves symptoms in SCD model mice. SCD mice exhibit severe liver damage and lung inflammation associated with high expression levels of proinflammatory cytokines and adhesion molecules compared with normal mice. Importantly, these symptoms subsided after Nrf2 activation. Although hemolysis and stress erythropoiesis did not change substantially in the Nrf2-activated SCD mice, Nrf2 promoted the elimination of plasma heme released by sickle cells’ hemolysis and thereby reduced oxidative stress and inflammation, demonstrating that Nrf2 activation reduces organ damage and segregates inflammation from prevention of hemolysis in SCD mice. Furthermore, administration of the Nrf2 inducer CDDO-Im (2-cyano-3, 12 dioxooleana-1, 9 diene-28-imidazolide) also relieved inflammation and organ failure in SCD mice. These results support the contention that Nrf2 induction may be an important means to protect organs from the pathophysiology of sickle cell-induced damage.

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 296
Author(s):  
Rosa Vona ◽  
Nadia Maria Sposi ◽  
Lorenza Mattia ◽  
Lucrezia Gambardella ◽  
Elisabetta Straface ◽  
...  

Sickle cell disease (SCD) is the most common hereditary disorder of hemoglobin (Hb), which affects approximately a million people worldwide. It is characterized by a single nucleotide substitution in the β-globin gene, leading to the production of abnormal sickle hemoglobin (HbS) with multi-system consequences. HbS polymerization is the primary event in SCD. Repeated polymerization and depolymerization of Hb causes oxidative stress that plays a key role in the pathophysiology of hemolysis, vessel occlusion and the following organ damage in sickle cell patients. For this reason, reactive oxidizing species and the (end)-products of their oxidative reactions have been proposed as markers of both tissue pro-oxidant status and disease severity. Although more studies are needed to clarify their role, antioxidant agents have been shown to be effective in reducing pathological consequences of the disease by preventing oxidative damage in SCD, i.e., by decreasing the oxidant formation or repairing the induced damage. An improved understanding of oxidative stress will lead to targeted antioxidant therapies that should prevent or delay the development of organ complications in this patient population.


Author(s):  
Rosa Vona ◽  
Nadia Maria Sposi ◽  
Lorenza Mattia ◽  
Lucrezia Gambardella ◽  
Elisabetta Straface ◽  
...  

Sickle cell disease (SCD) is the most common hereditary disorder of hemoglobin (Hb) that affects approximately a millions people worldwide. It is characterized by a single nucleotide substitution on the β-globin gene, leading to the production of abnormal sickle hemoglobin with multi-system consequences. Mutated Hb leads to profound changes in: i) red blood cell metabolism and physiology; ii) endothelial signaling; and iii) immune response. Oxidative stress is an important hallmark of SCD. It plays a key role in the pathophysiology of hemolysis, vessel occlusion and the following organ damage in sickle cell patients. For this reason, reactive oxidizing species and the (end)-products of their oxidative reactions have been proposed as markers of both tissue pro-oxidant status and disease severity. Although more studies are needed to clarify their role, antioxidant agents have been shown to be effective in reducing pathological consequences of the disease by preventing oxidative damage in SCD, i.e. by decreasing the oxidant formation or repairing the induced damage. An improved understanding of oxidative stress will lead to targeted antioxidant therapies that should prevent or delay the development of organ complications in this patient population.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 411-411 ◽  
Author(s):  
Nadine Keleku-Lukwete ◽  
Mikiko Suzuki ◽  
Akihito Otsuki ◽  
Kouhei Tsuchida ◽  
Saori Katayama ◽  
...  

Abstract Chronic hemolysis in sickle cell disease (SCD) gives rise to intermittent vessel occlusion. Recurrent ischemia-reperfusion generates high levels of reactive oxygen species (ROS) that leads to cell damage. On the other hand, lysed red blood cells (RBC) released free heme into blood stream, which contributes to generation of oxidant microenvironment. ROS burden generated by heme and ischemia-reperfusion injury contributes to endothelial cell activation that promotes inflammatory response with activation of inflammatory mediators. Sickle cell patients bearing high white blood cell (WBC) count develop severe complications of the disease. Nrf2 is a transcription factor that mediates adaptation to oxidative stress and cell defense. Under homeostatic conditions, Nrf2 is trapped by Keap1 and degraded by proteasome pathway. Upon exposure to stress stimuli, such as ROS and electrophiles, Nrf2 is stabilized and activates transcription of cytoprotective and antioxidants genes. Therefore, we hypothesized that Nrf2 activation might be important for tissue protection in SCD. To evaluate the therapeutic effect of Nrf2 activation on SCD, we used a SCD knock-in mouse model bearing human mutated globin loci. Since Keap1 negatively regulated Nrf2 in normal conditions, we crossed the SCD model mice with Keap1 hypomorphic knockdown (Keap1F/-) mice to generate compound mutant (SCD::Keap1F/-) mice, in which Nrf2 was constitutively activated. Histological analysis of the liver and lung revealed that congestive reaction and necrotic area observed in the SCD mice were significantly reduced in the SCD::Keap1F/- mice. Moreover, liver damage marker alanine transferase (ALT) were also decreased in SCD::Keap1F/- mice compared with SCD mice. We further examined inflammation status using human IL6 reporter mouse system and found that inflammation, which was mainly observed in lung of SCD mice, was markedly improved in the SCD::Keap1F/- mice. Expression levels of inflammatory cytokines IL6 and IL1β in the lung as well as adhesion molecules VCAM and P-selectin in the aorta of SCD::Keap1F/- mice were lower than those of the SCD mice. These results indicate that Nrf2 activation improves organ damage and inflammation in the SCD mice. On the other hand, hemolysis of sickle cells and compensatory stress erythropoiesis did not change substantially between the SCD and the SCD::Keap1F/- mice. These results indicate that Nrf2 activation improves organ damage and inflammation independently from improvement of hemolysis. Previous reports show that free heme released from sickle cells gives rise to ROS-mediate pathological process as inflammation and organ damage in SCD. We therefore measured plasma free heme and downstream product indirect bilirubin in the SCD::Keap1F/- mice, and found that both heme and indirect bilirubin was decreased in the SCD::Keap1F/- mice. These results demonstrate that Nrf2 activation improves SCD symptoms at least in part by elimination of free heme. To determine whether chemical compounds that serve as Nrf2 inducers have a protective potential of SCD mice organs, we treated 6-weeks aged mice with an Nrf2 inducer CDDO-Im (20 μmol/kg) 3 times per week for 3 weeks. CDDO-Im administration progressively reduced WBC numbers in the SCD::Keap1F/- mice. Also we observed decrease in the expression level of IL6 and IL1β in the lung and necrotic area in the liver in CDDO-Im-treated SCD::Keap1F/- mice. These results indicate that administration of a chemical Nrf2 inducer relieves inflammation and organ damage in the SCD mice. Collectively, these data provide the evidence that Nrf2 activation improves ROS-mediated organ damages and inflammation. Associated in the therapy of SCD, Nrf2 inducers could be of benefit to SCD patients. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
pp. 1-9
Author(s):  
Hongmei Zhao ◽  
Yun Qiu ◽  
Yichen Wu ◽  
Hong Sun ◽  
Sumin Gao

<b><i>Introduction/Aims:</i></b> Hydrogen sulfide (H<sub>2</sub>S) is considered to be the third most important endogenous gasotransmitter in organisms. GYY4137 is a long-acting donor for H<sub>2</sub>S, a gas transmitter that has been shown to prevent multi-organ damage in animal studies. We previously reported the effect of GYY4137 on cardiac ischaemia reperfusion injury (IRI) in diabetic mice. However, the role and mechanism of GYY4137 in renal IRI are poorly understood. The aims of this study were to determine whether GYY4137 can effectively alleviate the injury induced by renal ischaemia reperfusion and to explore its possible mechanism. <b><i>Methods:</i></b> Mice received right nephrectomy and clipping of the left renal pedicle for 45 min. GYY4137 was administered by intraperitoneal injection for 2 consecutive days before the operation. The model of hypoxia/reoxygenation injury was established in HK-2 cells, which were pre-treated with or without GYY4137. Renal histology, function, apoptosis, and oxidative stress were measured. Western blot was used to measure the target ­protein after renal IRI. <b><i>Results:</i></b> The results indicated that GYY4137 had a clear protective effect on renal IRI as reflected by the attenuation of renal dysfunction, renal tubule injury, and apoptosis. Moreover, GYY4137 remarkably reduced renal IRI-induced oxidative stress. GYY4137 significantly elevated the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nrf2) and the expression of antioxidant enzymes regulated by Nrf2, including SOD, HO-1, and NQO-1. <b><i>Conclusions:</i></b> GYY4137 alleviates ischaemia reperfusion-induced renal injury through activating the antioxidant effect mediated by Nrf2 signalling.


2020 ◽  
Vol 318 (3) ◽  
pp. G419-G427 ◽  
Author(s):  
Tatsuhide Nabeshima ◽  
Shin Hamada ◽  
Keiko Taguchi ◽  
Yu Tanaka ◽  
Ryotaro Matsumoto ◽  
...  

The activation of the Kelch-like ECH-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) pathway contributes to cancer progression in addition to oxidative stress responses. Loss-of-function Keap1 mutations were reported to activate Nrf2, leading to cancer progression. We examined the effects of Keap1 deletion in a cholangiocarcinoma mouse model using a mutant K-ras/ p53 mouse. Introduction of the Keap1 deletion into liver-specific mutant K-ras/ p53 expression resulted in the formation of invasive cholangiocarcinoma. Comprehensive analyses of the gene expression profiles identified broad upregulation of Nrf2-target genes such as Nqo1 and Gstm1 in the Keap1-deleted mutant K-ras/ p53 expressing livers, accompanied by upregulation of cholangiocyte-related genes. Among these genes, the transcriptional factor Sox9 was highly expressed in the dysplastic bile duct. The Keap-Nrf2-Sox9 axis might serve as a novel therapeutic target for cholangiocarcinoma. NEW & NOTEWORTHY The Keap1-Nrf2 system has a wide variety of effects in addition to the oxidative stress response in cancer cells. Addition of the liver-specific Keap1 deletion to mice harboring mutant K-ras and p53 accelerated cholangiocarcinoma formation, together with the hallmarks of Nrf2 activation. This process involved the expansion of Sox9-positive cells, indicating increased differentiation toward the cholangiocyte phenotype.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yang Bai ◽  
Xiaolu Wang ◽  
Song Zhao ◽  
Chunye Ma ◽  
Jiuwei Cui ◽  
...  

Cardiovascular disease (CVD) causes an unparalleled proportion of the global burden of disease and will remain the main cause of mortality for the near future. Oxidative stress plays a major role in the pathophysiology of cardiac disorders. Several studies have highlighted the cardinal role played by the overproduction of reactive oxygen or nitrogen species in the pathogenesis of ischemic myocardial damage and consequent cardiac dysfunction. Isothiocyanates (ITC) are sulfur-containing compounds that are broadly distributed among cruciferous vegetables. Sulforaphane (SFN) is an ITC shown to possess anticancer activities by bothin vivoand epidemiological studies. Recent data have indicated that the beneficial effects of SFN in CVD are due to its antioxidant and anti-inflammatory properties. SFN activates NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor that serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than a hundred cytoprotective proteins, including antioxidants and phase II detoxifying enzymes. This review will summarize the evidence from clinical studies and animal experiments relating to the potential mechanisms by which SFN modulates Nrf2 activation and protects against CVD.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zi-Huan Zhang ◽  
Jia-Qiang Liu ◽  
Cheng-Di Hu ◽  
Xin-Tong Zhao ◽  
Fei-Yun Qin ◽  
...  

Luteolin (LUT) possesses multiple biologic functions and has beneficial effects for cardiovascular and cerebral vascular diseases. Here, we investigated the protective effects of LUT against subarachnoid hemorrhage (SAH) and the involvement of underlying molecular mechanisms. In a rat model of SAH, LUT significantly inhibited SAH-induced neuroinflammation as evidenced by reduced microglia activation, decreased neutrophil infiltration, and suppressed proinflammatory cytokine release. In addition, LUT markedly ameliorated SAH-induced oxidative damage and restored the endogenous antioxidant systems. Concomitant with the suppressed oxidative stress and neuroinflammation, LUT significantly improved neurologic function and reduced neuronal cell death after SAH. Mechanistically, LUT treatment significantly enhanced the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), while it downregulated nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation. Inhibition of Nrf2 by ML385 dramatically abrogated LUT-induced Nrf2 activation and NLRP3 suppression and reversed the beneficial effects of LUT against SAH. In neurons and microglia coculture system, LUT also mitigated oxidative stress, inflammatory response, and neuronal degeneration. These beneficial effects were associated with activation of the Nrf2 and inhibitory effects on NLRP3 inflammasome and were reversed by ML385 treatment. Taken together, this present study reveals that LUT confers protection against SAH by inhibiting NLRP3 inflammasome signaling pathway, which may be modulated by Nrf2 activation.


2020 ◽  
Vol 21 (8) ◽  
pp. 2951 ◽  
Author(s):  
Masahiro Nezu ◽  
Norio Suzuki

Over 10% of the global population suffers from kidney disease. However, only kidney replacement therapies, which burden medical expenses, are currently effective in treating kidney disease. Therefore, elucidating the complicated molecular pathology of kidney disease is an urgent priority for developing innovative therapeutics for kidney disease. Recent studies demonstrated that intertwined renal vasculature often causes ischemia-reperfusion injury (IRI), which generates oxidative stress, and that the accumulation of oxidative stress is a common pathway underlying various types of kidney disease. We reported that activating the antioxidative transcription factor Nrf2 in renal tubules in mice with renal IRI effectively mitigates tubular damage and interstitial fibrosis by inducing the expression of genes related to cytoprotection against oxidative stress. Additionally, since the kidney performs multiple functions beyond blood purification, renoprotection by Nrf2 activation is anticipated to lead to various benefits. Indeed, our experiments indicated the possibility that Nrf2 activation mitigates anemia, which is caused by impaired production of the erythroid growth factor erythropoietin from injured kidneys, and moderates organ damage worsened by anemic hypoxia. Clinical trials investigating Nrf2-activating compounds in kidney disease patients are ongoing, and beneficial effects are being obtained. Thus, Nrf2 activators are expected to emerge as first-in-class innovative medicine for kidney disease treatment.


2020 ◽  
Vol 41 (4) ◽  
pp. 405-416 ◽  
Author(s):  
Feng He ◽  
Laura Antonucci ◽  
Michael Karin

Abstract Nuclear factor erythroid 2-related factor 2 (NRF2) is a master transcriptional regulator of genes whose products defend our cells for toxic and oxidative insults. Although NRF2 activation may reduce cancer risk by suppressing oxidative stress and tumor-promoting inflammation, many cancers exhibit elevated NRF2 activity either due to mutations that disrupt the negative control of NRF2 activity or other factors. Importantly, NRF2 activation is associated with poor prognosis and NRF2 has turned out to be a key activator of cancer-supportive anabolic metabolism. In this review, we summarize the diverse roles played by NRF2 in cancer focusing on metabolic reprogramming and tumor-promoting inflammation.


2018 ◽  
Vol 46 (02) ◽  
pp. 469-488 ◽  
Author(s):  
Ji Yun Jung ◽  
Sang Mi Park ◽  
Hae Li Ko ◽  
Jong Rok Lee ◽  
Chung A Park ◽  
...  

Oxidative stress induced by reactive oxygen species is the main cause of various liver diseases. This study investigated the hepatoprotective effect of Epimedium koreanum Nakai water extract (EKE) against arachidonic acid (AA)[Formula: see text][Formula: see text][Formula: see text]iron-mediated cytotoxicity in HepG2 cells and carbon tetrachloride (CCl4-)-mediated acute liver injury in mice. Pretreatment with EKE (30 and 100[Formula: see text][Formula: see text]g/mL) significantly inhibited AA[Formula: see text][Formula: see text][Formula: see text]iron-mediated cytotoxicity in HepG2 cells by preventing changes in the expression of cleaved caspase-3 and poly(ADP-ribose) polymerase. EKE attenuated hydrogen peroxide production, glutathione depletion, and mitochondrial membrane dysfunction. EKE also increased the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), transactivated anti-oxidant response element harboring luciferase activity, and induced the expression of anti-oxidant genes. Furthermore, the cytoprotective effect of EKE against AA[Formula: see text][Formula: see text][Formula: see text]iron was blocked in Nrf2 knockout cells. Ultra-performance liquid chromatography analysis showed that EKE contained icariin, icaritin, and quercetin; icaritin and quercetin were both found to protect HepG2 cells from AA[Formula: see text][Formula: see text][Formula: see text]iron via Nrf2 activation. In a CCl4-induced mouse model of liver injury, pretreatment with EKE (300[Formula: see text]mg/kg) for four consecutive days ameliorated CCl4-mediated increases in serum aspartate aminotransferase activity, histological activity index, hepatic parenchyma degeneration, and inflammatory cell infiltration. EKE also decreased the number of nitrotyrosine-, 4-hydroxynonenal-, cleaved caspase-3-, and cleaved poly(ADP-ribose) polymerase-positive cells in hepatic tissues. These results suggest EKE is a promising candidate for the prevention or treatment of oxidative stress-related liver diseases via Nrf2 activation.


Sign in / Sign up

Export Citation Format

Share Document