scholarly journals Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation

2016 ◽  
Vol 113 (21) ◽  
pp. E2973-E2982 ◽  
Author(s):  
Catharina C. Gross ◽  
Andreas Schulte-Mecklenbeck ◽  
Anna Rünzi ◽  
Tanja Kuhlmann ◽  
Anita Posevitz-Fejfár ◽  
...  

Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS) resulting from a breakdown in peripheral immune tolerance. Although a beneficial role of natural killer (NK)-cell immune-regulatory function has been proposed, it still needs to be elucidated whether NK cells are functionally impaired as part of the disease. We observed NK cells in active MS lesions in close proximity to T cells. In accordance with a higher migratory capacity across the blood–brain barrier, CD56bright NK cells represent the major intrathecal NK-cell subset in both MS patients and healthy individuals. Investigating the peripheral blood and cerebrospinal fluid of MS patients treated with natalizumab revealed that transmigration of this subset depends on the α4β1 integrin very late antigen (VLA)-4. Although no MS-related changes in the migratory capacity of NK cells were observed, NK cells derived from patients with MS exhibit a reduced cytolytic activity in response to antigen-activated CD4+ T cells. Defective NK-mediated immune regulation in MS is mainly attributable to a CD4+ T-cell evasion caused by an impaired DNAX accessory molecule (DNAM)-1/CD155 interaction. Both the expression of the activating NK-cell receptor DNAM-1, a genetic alteration consistently found in MS-association studies, and up-regulation of the receptor’s ligand CD155 on CD4+ T cells are reduced in MS. Therapeutic immune modulation of IL-2 receptor restores impaired immune regulation in MS by increasing the proportion of CD155-expressing CD4+ T cells and the cytolytic activity of NK cells.

Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 790
Author(s):  
Grazyna Galazka ◽  
Malgorzata Domowicz ◽  
Alicja Ewiak-Paszynska ◽  
Anna Jurewicz

NK cells (natural killer cells) being a part of the innate immune system have been shown to be involved in immunoregulation of autoimmune diseases. Previously we have shown that HINT1/Hsp70 treatment induced regulatory NK cells ameliorating experimental autoimmune encephalomyelitis (EAE) course and CD4+ T cells proliferation. NK cells were isolated from mice treated with HINT1/Hsp70 and co-cultured with proteolipid protein (PLP)-stimulated CD4+ T cells isolated from EAE mice. Cell proliferation was assessed by thymidine uptake, cytotoxicity by lactate dehydrogenase (LDH) release assay and fluorescence activated cell sorting (FACS) analysis, protein expression by Western blot, mRNA by quantitative RT-PCR. Gene related to anergy in lymphocytes (GRAIL) expression was downregulated by specific siRNA and GRAIL overexpression was induced by pcDNA-GRAIL transfection. HINT1/Hsp70 pretreatment of EAE SJL/J mice ameliorated EAE course, suppressed PLP-induced T cell proliferation by enhancing T cell expression of GRAIL as GRAIL downregulation restored T cell proliferation. HINT1/Hsp70 treatment induced immunoregulatory NK cells which inhibited PLP-stimulated T cell proliferation not depending on T cell necrosis and apoptosis. This immunoregulatory NK cell function depended on NK cell expression of GRAIL as GRAIL downregulation diminished inhibition of NK cell suppression of T cell proliferation. Similarly GRAIL overexpression in NK cells induced their regulatory function. HINT1/Hsp70 treatment generated regulatory NK cells characterized by expression of GRAIL.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4718-4718
Author(s):  
Giulia Giunti ◽  
David Malone ◽  
Lucas Chan ◽  
Darling David ◽  
Shahram Y Kordasti ◽  
...  

Abstract Abstract 4718 Improved experimental therapies are needed for Multiple Myeloma (MM). Despite major progress in treatment and initial induction of remission, myeloma remains an incurable disease. Although immunotherapy and, in particular, the employment of NK cells offers an approach of interest for the treatment of Multiple Myeloma (MM), recent studies have shown that myeloma cells utilise a number different mechanisms to impair NK and T cell functions. Important amongst these mechanisms is the reduced expression of CD80 in the sub-populations of PBMC isolated from myeloma patients. We have previously demonstrated CD80/IL-2 mediated stimulation of NK and T cells isolated from AML patients (as measured by proliferation, cytokine release and target cell specific cytolytic activity). In the present study we have examined the ability of genetically modified MM cells engineered to express CD80 and IL-2 to stimulate NK cell functions. These studies confirm the ability of MM cells to suppress NK cell functions in healthy PBMC and show that in contrast to the unmodified MM cells, the CD80/IL-2 expressing MM cells are able to stimulate a moderate increase in NK and T cell numbers and a significant increase in the fraction of NK cells with activatory receptors (NKp44, NKp30, NKp46) and activation markers (CD69) on the cell surface of both NK and T cells. More importantly for potential therapeutic applications the stimulated NK cells show increased cytolytic activity against the unmodified MM cells. This data suggest that CD80/IL-2 MM cells may be able to overcome the immune suppressive functions of unmodified MM cells and to stimulate NK, and T cell mediated responses against the unmodified MM cells. Therefore CD80/IL-2 expressing MM cells may provide a suitable cellular vaccine for NK cell stimulation and possibly the induction of broader ranging immunological responses against multiple myeloma cells. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 290 (5) ◽  
pp. E856-E863 ◽  
Author(s):  
Stephanie T. Page ◽  
Stephen R. Plymate ◽  
William J. Bremner ◽  
Alvin M. Matsumoto ◽  
David L. Hess ◽  
...  

The higher prevalence of autoimmune disease among women compared with men suggests that steroids impact immune regulation. To investigate how sex steroids modulate cellular immune function, we conducted a randomized trial in 12 healthy men aged 35–55 yr treated for 28 days with placebo, a GnRH antagonist, acyline to induce medical castration, or acyline plus daily testosterone (T) gel to replace serum T, followed by a 28-day recovery period. Serum hormones were measured weekly and peripheral blood lymphocytes (PBLs) were collected biweekly for analyses of thymus-derived lymphocyte (T cell) subtypes and natural killer (NK) cells. Compared with the other groups and to baseline throughout the drug exposure period, men receiving acyline alone had significant reductions in serum T (near or below castrate levels), dihydrotestosterone, and estradiol ( P < 0.05). Medical castration significantly reduced the percentage of CD4+CD25+ T cells ( P < 0.05), decreased mitogen-induced CD8+ T cell IFN-γ expression, and increased the percentage of NK cells without affecting the ratio of CD4+ to CD8+ T cells and the expression of NK cell-activating receptor NKG2D or homing receptor CXCR1. No changes in immune composition were observed in subjects receiving placebo or acyline with replacement T. These data suggest that T and/or its metabolites may help maintain the physiological balance of autoimmunity and protective immunity by preserving the number of regulatory T cells and the activation of CD8+ T cells. In addition, sex steroids suppress NK cell proliferation. This study supports a complex physiological role for T and/or its metabolites in immune regulation.


Author(s):  
Shannon L. McArdel ◽  
Anne-Sophie Dugast ◽  
Maegan E. Hoover ◽  
Arjun Bollampalli ◽  
Enping Hong ◽  
...  

AbstractRecombinant agonists that activate co-stimulatory and cytokine receptors have shown limited clinical anticancer utility, potentially due to narrow therapeutic windows, the need for coordinated activation of co-stimulatory and cytokine pathways and the failure of agonistic antibodies to recapitulate signaling by endogenous ligands. RTX-240 is a genetically engineered red blood cell expressing 4-1BBL and IL-15/IL-15Rα fusion (IL-15TP). RTX-240 is designed to potently and simultaneously stimulate the 4-1BB and IL-15 pathways, thereby activating and expanding T cells and NK cells, while potentially offering an improved safety profile through restricted biodistribution. We assessed the ability of RTX-240 to expand and activate T cells and NK cells and evaluated the in vivo efficacy, pharmacodynamics and tolerability using murine models. Treatment of PBMCs with RTX-240 induced T cell and NK cell activation and proliferation. In vivo studies using mRBC-240, a mouse surrogate for RTX-240, revealed biodistribution predominantly to the red pulp of the spleen, leading to CD8 + T cell and NK cell expansion. mRBC-240 was efficacious in a B16-F10 melanoma model and led to increased NK cell infiltration into the lungs. mRBC-240 significantly inhibited CT26 tumor growth, in association with an increase in tumor-infiltrating proliferating and cytotoxic CD8 + T cells. mRBC-240 was tolerated and showed no evidence of hepatic injury at the highest feasible dose, compared with a 4-1BB agonistic antibody. RTX-240 promotes T cell and NK cell activity in preclinical models and shows efficacy and an improved safety profile. Based on these data, RTX-240 is now being evaluated in a clinical trial.


2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


2018 ◽  
Vol 93 (3) ◽  
Author(s):  
Abena K. R. Kwaa ◽  
Chloe A. G. Talana ◽  
Joel N. Blankson

ABSTRACTCurrent shock-and-kill strategies for the eradication of the HIV-1 reservoir have resulted in blips of viremia but not in a decrease in the size of the latent reservoir in patients on suppressive antiretroviral therapy (ART). This discrepancy could potentially be explained by an inability of the immune system to kill HIV-1-infected cells following the reversal of latency. Furthermore, some studies have suggested that certain latency-reversing agents (LRAs) may inhibit CD8+T cell and natural killer (NK) cell responses. In this study, we tested the hypothesis that alpha interferon (IFN-α) could improve the function of NK cells from chronic progressors (CP) on ART. We show here that IFN-α treatment enhanced cytokine secretion, polyfunctionality, degranulation, and the cytotoxic potential of NK cells from healthy donors (HD) and CP. We also show that this cytokine enhanced the viral suppressive capacity of NK cells from HD and elite controllers or suppressors. Furthermore, IFN-α enhanced global CP CD8+T cell cytokine responses and the suppressive capacity of ES CD8+T cells. Our data suggest that IFN-α treatment may potentially be used as an immunomodulatory agent in HIV-1 cure strategies.IMPORTANCEData suggest that HIV+individuals unable to control infection fail to do so due to impaired cytokine production and/cytotoxic effector cell function. Consequently, the success of cure agendas such as the shock-and-kill strategy will probably depend on enhancing patient effector cell function. In this regard, NK cells are of particular interest since they complement the function of CD8+T cells. Here, we demonstrate the ability of short-course alpha interferon (IFN-α) treatments to effectively enhance such effector functions in chronic progressor NK cells without inhibiting their general CD8+T cell function. These results point to the possibility of exploring such short-course IFN-α treatments for the enhancement of effector cell function in HIV+patients in future cure strategies.


2019 ◽  
Vol 28 (9-10) ◽  
pp. 1155-1160 ◽  
Author(s):  
J. Xu ◽  
Y. Wang ◽  
H. Jiang ◽  
M. Sun ◽  
J. Gao ◽  
...  

Multiple sclerosis is a disease characterized by inflammation and demyelination located in the central nervous system. Experimental autoimmune encephalomyelitis (EAE) is the most common animal model for multiple sclerosis (MS). Although the roles of T cells in MS/EAE have been well investigated, little is known about the functions of other immune cells in the neuroinflammation model. Here we found that an essential cytokine transforming growth factor β (TGF-β) which could mediate the differentiation of Th17/regulatory T cells was implicated in the natural killer (NK) cells’ activity in EAE. In EAE mice, TGF-β expression was first increased at the onset and then decreased at the peak, but the expressions of TGF-β receptors and downstream molecules were not affected in EAE. When we immunized the mice with MOG antigen, it was revealed that TGF-β treatment reduced susceptibility to EAE with a lower clinical score than the control mice without TGF-β. Consistently, inflammatory cytokine production was reduced in the TGF-β treated group, especially with downregulated pathogenic interleukin-17 in the central nervous system tissue. Furthermore, TGF-β could increase the transcription level of NK cell marker NCR1 both in the spleen and in the CNS without changing other T cell markers. Meanwhile TGF-β promoted the proliferation of NK cell proliferation. Taken together, our data demonstrated that TGF-β could confer protection against EAE model in mice through NK cells, which would be useful for the clinical therapy of MS.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2171
Author(s):  
Isabel Valhondo ◽  
Fakhri Hassouneh ◽  
Nelson Lopez-Sejas ◽  
Alejandra Pera ◽  
Beatriz Sanchez-Correa ◽  
...  

Background: Acute myeloid leukemia (AML) remains a major clinical challenge due to poor overall survival, which is even more dramatic in elderly patients. TIGIT, an inhibitory receptor that interacts with CD155 and CD112 molecules, is considered as a checkpoint in T and NK cell activation. This receptor shares ligands with the co-stimulatory receptor DNAM-1 and with TACTILE. The aim of this work was to analyze the expression of DNAM-1, TIGIT and TACTILE in NK cells and T cell subsets in AML patients. Methods: We have studied 36 patients at the time of diagnosis of AML and 20 healthy volunteers. The expression of DNAM-1, TIGIT and TACTILE in NK cells and T cells, according to the expression of CD3 and CD56, was performed by flow cytometry. Results: NK cells, CD56− T cells and CD56+ T (NKT-like) cells from AML patients presented a reduced expression of DNAM-1 compared with healthy volunteers. An increased expression of TIGIT was observed in mainstream CD56− T cells. No differences were observed in the expression of TACTILE. Simplified presentation of incredibly complex evaluations (SPICE) analysis of the co-expression of DNAM-1, TIGIT and TACTILE showed an increase in NK and T cells lacking DNAM-1 and co-expressing TIGIT and TACTILE. Low percentages of DNAM-1−TIGIT+TACTILE+ NK cells and DNAM-1− TIGIT+TACTILE+ CD56− T cells were associated with a better survival of AML patients. Conclusions: The expression of DNAM-1 is reduced in NK cells and in CD4+ and CD8+ T cells from AML patients compared with those from healthy volunteers. An increased percentage of NK and T cells lacking DNAM-1 and co-expressing TIGIT and TACTILE is associated with patient survival, supporting the role of TIGIT as a novel candidate for checkpoint blockade.


Blood ◽  
2010 ◽  
Vol 116 (17) ◽  
pp. 3238-3248 ◽  
Author(s):  
Enrico Lugli ◽  
Carolyn K. Goldman ◽  
Liyanage P. Perera ◽  
Jeremy Smedley ◽  
Rhonda Pung ◽  
...  

Abstract Interleukin-15 (IL-15) is a cytokine with potential therapeutic application in individuals with cancer or immunodeficiency to promote natural killer (NK)– and T-cell activation and proliferation or in vaccination protocols to generate long-lived memory T cells. Here we report that 10-50 μg/kg IL-15 administered intravenously daily for 12 days to rhesus macaques has both short- and long-lasting effects on T-cell homeostasis. Peripheral blood lymphopenia preceded a dramatic expansion of NK cells and memory CD8 T cells in the circulation, particularly a 4-fold expansion of central memory CD8 T cells and a 6-fold expansion of effector memory CD8 T cells. This expansion is a consequence of their activation in multiple tissues. A concomitant inverted CD4/CD8 T-cell ratio was observed throughout the body at day 13, a result of preferential CD8 expansion. Expanded T- and NK-cell populations declined in the blood soon after IL-15 was stopped, suggesting migration to extralymphoid sites. By day 48, homeostasis appears restored throughout the body, with the exception of the maintenance of an inverted CD4/CD8 ratio in lymph nodes. Thus, IL-15 generates a dramatic expansion of short-lived memory CD8 T cells and NK cells in immunocompetent macaques and has long-term effects on the balance of CD4+ and CD8+ T cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1175-1175
Author(s):  
Birgit Federmann ◽  
Matthias Haegele ◽  
Christoph Faul ◽  
Wichard Vogel ◽  
Lothar Kanz ◽  
...  

Abstract Haploidentical hematopoietic cell transplantation (HHCT) using CD3/CD19 depleted grafts may lead to faster engraftment and immune reconstitution since grafts contain also graft-facilitating-cells, CD34− progenitors, NK cells, and dendritic cells. Reduced intensity conditioning may also have a positive impact on immune reconstitution following HHCT. 26 adults received CD3/CD19 depleted HHCT after RIC (150–200 mg/m2 fludarabine, 10mg/kg thiothepa, 120 mg/m2 melphalan and 5mg/day OKT-3 (day −5 to +14)) at our institution between 2005–2008. We prospectively evaluated engraftment and immune reconstitution. B-, NK-, T- and T-cell subsets (CD3/8, CD4/8, CD4/45RA/RO), TCR-Vβ repertoire and NK-cell receptors (NKP30, NKP44, NKP46, NKG2D, CD158a/b/e, CD85j, NKG2A, CD161) were analyzed by FACS. Grafts contained 8.8×106 CD34+ (range, 4.3–18.0 ×106), 2.9×104 CD3+ (range, 1.2–9.2×104) and 3.6×107 CD56+ (range, 0.02–23.0 ×107) cells/kg. Engraftment was rapid with a median time to &gt;500 granulocytes/μl of 11 days (range, 9–15) and a median time to &gt;20 000 platelets/μl of 11 days (range, 8–23). Full chimerism was reached on day 14 (median; range, 6–26). NK-cell engraftment was rapid, reaching normal values on day 20 (median of 247 CD16+CD56+CD3− cells/μl (range, 1–886)) with NK cells comprising up to 70% of lymphocytes. B-cell reconstitution was delayed with 81 (range, 0–280) and 335 (range, 11–452) CD19+20+ cells/μl on days 150 and 400, respectively. T-cell reconstitution was impaired with 49 (range, 0–586) and 364 (range, 35–536) CD3+ cells/μl on day 60 and day 150, respectively. We observed an increase of CD3+CD8+ cells in contrast to CD3+CD4+ cells early after HHCT with a median of 24 (range, 0–399) vs 16 (range, 0–257) and 159 (range, 1–402) vs 96 (range, 18–289) cells/μl on day 50 and day 200, respectively. CD4+CD45RA+ T cells increased slowly while CD4+CD45RO+ T cells reconstituted faster with a median of 61 CD4+CD45RO+ cells/μl (range, 0–310) vs 24 CD4+CD45RA+ (range, 0 to 152) on day 100. Within the CD4+CD25+ regulatory T cells there was a slow regeneration with median of 14 CD4+CD25+ cells/μl (range, 0–96) on day 100 and 28 CD4+CD25+ cells/μl (range, 19–160) on day 200. CD14+CD45+ monocytes did not reach normal values within the time of observation with 7 CD14+CD45+ cells/μl (range, 0–21) on day 120 and 7 CD14+CD45+ cells (range, 2–381) on day 400. TCR-Vβ repertoire and NK-cell receptor reconstitution was analyzed so far in 7 and 8 patients, respectively. We found a skewed T-cell repertoire with oligoclonal T-cell expansions to day 100 and normalization after day 200. An increased natural cytotoxicity receptor (NKP30, NKP44, NKP46) and NKG2A, but decreased NKG2D and KIR-expression was observed on NK-cells until day 100. In conclusion, T- and B-cell reconstitution is delayed after HHCT using CD3/CD19 depleted grafts and RIC. However, T-cell reconstitution is faster compared to data published with CD34 selected grafts and myeloablative conditioning. A fast NK-cell reconstitution early after HHCT was observed. Thus a combination of reduced intensity conditioning with CD3/CD19 depleted grafts appears to accelerate the immune recovery after haploidentical stem cell transplantation.


Sign in / Sign up

Export Citation Format

Share Document