scholarly journals Tropical bat as mammalian model for skin carotenoid metabolism

2016 ◽  
Vol 113 (39) ◽  
pp. 10932-10937 ◽  
Author(s):  
Ismael Galván ◽  
Juan Garrido-Fernández ◽  
José Ríos ◽  
Antonio Pérez-Gálvez ◽  
Bernal Rodríguez-Herrera ◽  
...  

Animals cannot synthesize carotenoid pigments de novo, and must consume them in their diet. Most mammals, including humans, are indiscriminate accumulators of carotenoids but inefficiently distribute them to some tissues and organs, such as skin. This limits the potential capacity of these organisms to benefit from the antioxidant and immunostimulatory functions that carotenoids fulfill. Indeed, to date, no mammal has been known to have evolved physiological mechanisms to incorporate and deposit carotenoids in the skin or hair, and mammals have therefore been assumed to rely entirely on other pigments such as melanins to color their integument. Here we use high-performance liquid chromatography (HPLC) in combination with time-of-flight mass spectrometry (HPLC-TOF/MS) to show that the frugivorous Honduran white bat Ectophylla alba colors its skin bright yellow with the deposition of the xanthophyll lutein. The Honduran white bat is thus a mammalian model that may help developing strategies to improve the assimilation of lutein in humans to avoid macular degeneration. This represents a change of paradigm in animal physiology showing that some mammals actually have the capacity to accumulate dietary carotenoids in the integument. In addition, we have also discovered that the majority of the lutein in the skin of Honduran white bats is present in esterified form with fatty acids, thereby permitting longer-lasting coloration and suggesting bright color traits may have an overlooked role in the visual communication of bats.

The Auk ◽  
2003 ◽  
Vol 120 (2) ◽  
pp. 400-410
Author(s):  
Kevin J. McGraw ◽  
Alexander J. Gregory ◽  
Robert S. Parker ◽  
Elizabeth Adkins-Regan

Abstract Carotenoid-based colors serve important sexual-signaling functions in many animals, but the proximate factor(s) underlying their expression has sparked controversy. In particular, the relative contributions of dietary and physiological mechanisms have been questioned of late. However, no studies have concurrently quantified levels of food intake or pigment processing in any species to examine the comparative effects of pigment acquisition and use on integumetary coloration. Here, we studied within- and between-sex patterns of food intake and plasma pigment circulation in the Zebra Finch (Taeniopygia guttata) to assess how sexually dichromatic, carotenoid-based bill pigmentation serves as an indicator of pigment access in the diet and carotenoid transport through the bloodstream. First, in a food-choice study, we found that males and females did not consume different types or amounts of food, despite dramatic sex differences in bill coloration. Similarly, variability in carotenoid-based bill pigmentation within each sex was uncoupled from levels of food consumption. Next, we used high-performance liquid-chromatography (HPLC) to quantify the types and amounts of carotenoids circulating through blood. Male and female Zebra Finches circulated the same four major carotenoid pigments in blood plasma (lutein, zeaxanthin, anhydrolutein, and β-cryptoxanthin), but males circulated a significantly higher concentration of plasma carotenoids than did females. Within both sexes, individuals that circulated more carotenoid pigments displayed more brightly colored bills. In sum, these results suggest that physiological factors such as pigment transport may play a more important role in shaping variability in carotenoid-based bill coloration in this species than does diet. Future studies should be aimed at identifying the proximate determinants of plasma carotenoid circulation in these birds as well as how circulated pigments are used to produce maximum color displays.


Author(s):  
Tamara Lang ◽  
Markus Himmelsbach ◽  
Franz Mlynek ◽  
Wolfgang Buchberger ◽  
Christian W. Klampfl

AbstractIn the present study, the uptake and metabolization of the sartan drug telmisartan by a series of plants was investigated. Thereby for seven potential metabolites, modifications on the telmisartan molecule such as hydroxylation and/or glycosylation could be tentatively identified. For two additional signals detected at accurate masses m/z 777.3107 and m/z 793.3096, no suggestions for molecular formulas could be made. Further investigations employing garden cress (Lepidium sativum) as a model plant were conducted. This was done in order to develop an analytical method allowing the detection of these substances also under environmentally relevant conditions. For this reason, the knowledge achieved from treatment of the plants with rather high concentrations of the parent drug (10 mg L−1) was compared with results obtained when using solutions containing telmisartan in the μg - ng L−1 range. Thereby the parent drug and up to three tentative drug-related metabolites could still be detected. Finally cress was cultivated in water taken from a local waste water treatment plant effluent containing 90 ng L−1 of telmisartan and harvested and the cress roots were extracted. In this extract, next to the parent drug one major metabolite, namely telmisartan-glucose could be identified.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 112
Author(s):  
Monika Bielecka ◽  
Bartosz Pencakowski ◽  
Marta Stafiniak ◽  
Klemens Jakubowski ◽  
Mehdi Rahimmalek ◽  
...  

Subgenus Perovskia of the extended genus of Salvia comprises several Central Asian medicinal and aromatic species, of which S. yangii and S. abrotanoides are the most widespread. These plants are cultivated in Europe as robust ornamentals, and several cultivars are available. However, their medicinal potential remains underutilized because of limited information about their phytochemical and genetic diversity. Thus, we combined an ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS) based metabolomics with DNA barcoding approach based on trnH-psbA and ITS2 barcodes to clarify the relationships between these two taxa. Metabolomic analysis demonstrated that aerial parts are more similar than roots and none of the major compounds stand out as distinct. Sugiol in S. yangii leaves and carnosic acid quinone in S. abrotanoides were mostly responsible for their chemical differentiation, whereas in roots the distinction was supported by the presence of five norditerpenoids in S. yangii and two flavonoids and one norditerpenoid in S. abrotanoides. To verify the metabolomics-based differentiation, we performed DNA authentication that revealed S. yangii and S. abrotanoides to be very closely related but separate species. We demonstrated that DNA barcoding coupled with parallel LC-MS profiling constitutes a powerful tool in identification of taxonomically close Salvia species.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1640
Author(s):  
Cecilia Jiménez-Sánchez ◽  
Fabián Pedregosa ◽  
Isabel Borrás-Linares ◽  
Jesús Lozano-Sánchez ◽  
Antonio Segura-Carretero

In this study, we determined the phytochemical profile of the Spanish “triguero” asparagus landrace “verde-morado” (Asparagus officinalis L.), a wild traditional landrace, and the improved “triguero” HT-801, together with two commercial green asparagus varieties. For comparison, we used reverse-phase high-performance liquid chromatography coupled with diode array electrospray time-of-flight mass spectrometry (RP-HPLC-DAD-ESI-TOF/MS) followed by a permutation test applied using a resampling methodology valid under a relaxed set of assumptions, such as i.i.d. errors (not necessarily normal) that are exchangeable under the null hypothesis. As a result, we postulate that “triguero” varieties (the improved HT-801 followed by its parent “verde-morado”) have a significantly different phytochemical profile from that of the other two commercial hybrid green varieties. In particular, we found compounds specific to the “triguero” varieties, such as feruloylhexosylhexose isomers, or isorhamnetin-3-O-glucoside, which was found only in the “triguero” variety HT-801. Although studies relating the phytochemical content of “triguero” asparagus varieties to its health-promoting effects are required, this characteristic phytochemical profile can be used for differentiating and revalorizating these asparagus cultivars.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sabine Scholz ◽  
Manuel Serif ◽  
David Schleheck ◽  
Martin D.J. Sayer ◽  
Alasdair M. Cook ◽  
...  

Abstract This study aimed to survey algal model organisms, covering phylogenetically representative and ecologically relevant taxa. Reports about the occurrence of sulfonates (particularly sulfoquinovose, taurine, and isethionate) in marine algae are scarce, and their likely relevance in global biogeochemical cycles and ecosystem functioning is poorly known. Using both field-collected seaweeds from NW Scotland and cultured strains, a combination of enzyme assays, high-performance liquid chromatography and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry was used to detect key sulfonates in algal extracts. This was complemented by bioinformatics, mining the publicly available genome sequences of algal models. The results confirm the widespread presence of sulfonates and their biosynthetic pathways in macro- and microalgae. However, it is also clear that catabolic pathways, if present, must be different from those documented from the bacterial systems since no complete cluster of gene homologues of key genes could be detected in algal genomes.


Sign in / Sign up

Export Citation Format

Share Document