scholarly journals Genome-wide screen identifies host colonization determinants in a bacterial gut symbiont

2016 ◽  
Vol 113 (48) ◽  
pp. 13887-13892 ◽  
Author(s):  
J. Elijah Powell ◽  
Sean P. Leonard ◽  
Waldan K. Kwong ◽  
Philipp Engel ◽  
Nancy A. Moran

Animal guts are often colonized by host-specialized bacterial species to the exclusion of other transient microorganisms, but the genetic basis of colonization ability is largely unknown. The bacteriumSnodgrassella alviis a dominant gut symbiont in honey bees, specialized in colonizing the hindgut epithelium. We developed methods for transposon-based mutagenesis inS. alviand, using high-throughput DNA sequencing, screened genome-wide transposon insertion (Tn-seq) and transcriptome (RNA-seq) libraries to characterize both the essential genome and the genes facilitating host colonization. Comparison of Tn-seq results from laboratory cultures and from monoinoculated worker bees reveal that 519 of 2,226 protein-coding genes inS. alviare essential in culture, whereas 399 are not essential but are beneficial for gut colonization. Genes facilitating colonization fall into three broad functional categories: extracellular interactions, metabolism, and stress responses. Extracellular components with strong fitness benefits in vivo include trimeric autotransporter adhesins, O antigens, and type IV pili (T4P). Experiments with T4P mutants establish that T4P inS. alvilikely function in attachment and biofilm formation, with knockouts experiencing a competitive disadvantage in vivo. Metabolic processes promoting colonization include essential amino acid biosynthesis and iron acquisition pathways, implying nutrient scarcity within the hindgut environment. Mechanisms to deal with various stressors, such as for the repair of double-stranded DNA breaks and protein quality control, are also critical in vivo. This genome-wide study identifies numerous genetic networks underlying colonization by a gut commensal in its native host environment, including some known from more targeted studies in other host–microbe symbioses.

Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 92 ◽  
Author(s):  
Shannon J. McKie ◽  
Anthony Maxwell ◽  
Keir C. Neuman

Next-generation sequencing (NGS) platforms have been adapted to generate genome-wide maps and sequence context of binding and cleavage of DNA topoisomerases (topos). Continuous refinements of these techniques have resulted in the acquisition of data with unprecedented depth and resolution, which has shed new light on in vivo topo behavior. Topos regulate DNA topology through the formation of reversible single- or double-stranded DNA breaks. Topo activity is critical for DNA metabolism in general, and in particular to support transcription and replication. However, the binding and activity of topos over the genome in vivo was difficult to study until the advent of NGS. Over and above traditional chromatin immunoprecipitation (ChIP)-seq approaches that probe protein binding, the unique formation of covalent protein–DNA linkages associated with DNA cleavage by topos affords the ability to probe cleavage and, by extension, activity over the genome. NGS platforms have facilitated genome-wide studies mapping the behavior of topos in vivo, how the behavior varies among species and how inhibitors affect cleavage. Many NGS approaches achieve nucleotide resolution of topo binding and cleavage sites, imparting an extent of information not previously attainable. We review the development of NGS approaches to probe topo interactions over the genome in vivo and highlight general conclusions and quandaries that have arisen from this rapidly advancing field of topoisomerase research.


2020 ◽  
Author(s):  
Georgia Chatzinikolaou ◽  
Kalliopi Stratigi ◽  
Kyriacos Agathangelou ◽  
Maria Tsekrekou ◽  
Evi Goulielmaki ◽  
...  

AbstractType II DNA Topoisomerases (TOP II) generate transient double-strand DNA breaks (DSBs) to resolve topological constraints during transcription. Using genome-wide mapping of DSBs and functional genomics approaches, we show that, in the absence of exogenous genotoxic stress, transcription leads to DSB accumulation and to the recruitment of the structure-specific ERCC1-XPF endonuclease on active gene promoters. Instead, we find that the complex is released from regulatory or gene body elements in UV-irradiated cells. Abrogation of ERCC1 or re-ligation blockage of TOP II-mediated DSBs aggravates the accumulation of transcription-associated γH2Ax and 53BP1 foci, which dissolve when TOP II-mediated DNA cleavage is inhibited. An in vivo biotinylation tagging strategy coupled to a high-throughput proteomics approach reveals that ERCC1-XPF interacts with TOP IIβ and the CTCF/cohesin complex, which co-localize with the heterodimer on DSBs. Together; our findings provide a rational explanation for the remarkable clinical heterogeneity seen in human disorders with ERCC1-XPF defects.


2004 ◽  
Vol 70 (9) ◽  
pp. 5199-5207 ◽  
Author(s):  
L. Fernández ◽  
I. Márquez ◽  
J. A. Guijarro

ABSTRACT This work reports the utilization of an in vivo expression technology system to identify in vivo-induced (ivi) genes in Yersinia ruckeri after determination of the conditions needed for its selection in fish. Fourteen clones were selected, and the cloned DNA fragments were analyzed after partial sequencing. In addition to sequences with no significant similarity, homology with genes encoding proteins putatively involved in two-component and type IV secretion systems, adherence, specific metabolic functions, and others were found. Among these sequences, four were involved in iron acquisition through a catechol siderophore (ruckerbactin). Thus, unlike other pathogenic yersiniae producing yersiniabactin, Y. ruckeri might be able to produce and utilize only this phenolate. The genetic organization of the ruckerbactin biosynthetic and uptake loci was similar to that of the Escherichia coli enterobactin gene cluster. Genes rucC and rupG, putative counterparts of E. coli entC and fepG, respectively, involved in the biosynthesis and transport of the iron siderophore complex, respectively, were analyzed further. Thus, regulation of expression by iron and temperature and their presence in other Y. ruckeri siderophore-producing strains were confirmed for these two loci. Moreover, 50% lethal dose values 100-fold higher than those of the wild-type strain were obtained with the rucC isogenic mutant, showing the importance of ruckerbactin in the pathogenesis caused by this microorganism.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Hualiang Pi ◽  
John D. Helmann

ABSTRACT The ferric uptake regulator (Fur) is the global iron biosensor in many bacteria. Fur functions as an iron-dependent transcriptional repressor for most of its regulated genes. There are a few examples where holo-Fur activates transcription, either directly or indirectly. Recent studies suggest that apo-Fur might also act as a positive regulator and that, besides iron metabolism, the Fur regulon might encompass other biological processes such as DNA synthesis, energy metabolism, and biofilm formation. Here, we obtained a genomic view of the Fur regulatory network in Bacillus subtilis using chromatin immunoprecipitation sequencing (ChIP-seq). Besides the known Fur target sites, 70 putative DNA binding sites were identified, and the vast majority had higher occupancy under iron-sufficient conditions. Among the new sites detected, a Fur binding site in the promoter region of the catDE operon is of particular interest. This operon, encoding catechol 2,3-dioxygenase, is critical for catechol degradation and is under negative regulation of CatR and YodB. These three repressors (Fur, CatR, and YodB) function cooperatively to regulate the transcription of catDE, with Fur functioning as a sensor of iron limitation and CatR as the major sensor of catechol stress. Genetic analysis suggests that CatDE is involved in metabolism of the catecholate siderophore bacillibactin, particularly when bacillibactin is constitutively produced and accumulates intracellularly, potentially generating endogenous toxic catechol derivatives. This study documents a role for catechol degradation in bacillibactin metabolism and provides evidence that catechol 2,3-dioxygenase can detoxify endogenously produced catechol substrates in addition to its more widely studied role in biodegradation of environmental aromatic compounds and pollutants. IMPORTANCE Many bacteria synthesize high-affinity iron chelators (siderophores). Siderophore-mediated iron acquisition is an efficient and widely utilized strategy for bacteria to meet their cellular iron requirements. One prominent class of siderophores uses catecholate groups to chelate iron. B. subtilis bacillibactin, structurally similar to enterobactin (made by enteric bacteria), is a triscatecholate siderophore that is hydrolyzed to monomeric units after import to release iron. However, the ultimate fates of these catechol compounds and their potential toxicities have not been defined previously. We performed genome-wide identification of Fur binding sites in vivo and uncovered a connection between catechol degradation and bacillibactin metabolism in B. subtilis. Besides its role in the detoxification of environmental catechols, the catechol 2,3-dioxygenase encoded by catDE also protects cells from intoxication by endogenous bacillibactin-derived catechol metabolites under iron-limited conditions. These findings shed light on the degradation pathway and precursor recycling of the catecholate siderophores.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wael Elhenawy ◽  
Sarah Hordienko ◽  
Steven Gould ◽  
Alexander M. Oberc ◽  
Caressa N. Tsai ◽  
...  

AbstractAdherent-invasive Escherichia coli (AIEC) are pathogenic bacteria frequently isolated from patients who have Crohn’s disease (CD). Despite the phenotypic differences between AIEC and commensal E. coli, comparative genomic approaches have been unable to differentiate these two groups, making the identification of key virulence factors a challenge. Here, we conduct a high-resolution, in vivo genetic screen to map AIEC genes required for intestinal colonization of mice. In addition, we use in vivo RNA-sequencing to define the host-associated AIEC transcriptome. We identify diverse metabolic pathways required for efficient gut colonization by AIEC and show that a type IV secretion system (T4SS) is required to form biofilms on the surface of epithelial cells, thereby promoting AIEC persistence in the gut. E. coli isolated from CD patients are enriched for a T4SS, suggesting a possible connection to disease activity. Our findings establish the T4SS as a principal AIEC colonization factor and highlight the use of genome-wide screens in decoding the infection biology of CD-associated bacteria that otherwise lack a defined genetic signature.


2017 ◽  
Author(s):  
Meng-Bin Ruan ◽  
Yi-Ling Yang ◽  
Xin Guo ◽  
Xue Wang ◽  
Bin Wang ◽  
...  

AbstractCC-type glutaredoxins (GRXs) are a land plant-specific GRX subgroup that evolved from CGFS GRXs, and participate in organ development and stress responses through the regulation of transcription factors. Here, genome-wide analysis identified 18 CC-type GRXs in the cassava genome, of which six (MeGRX058, 232, 360, 496, 785, and 892) were induced by drought and ABA stress in cassava leaves. Furthermore, we found that overexpression of MeGRX232 results in drought hypersensitivity in soil-grown plants, with a higher water loss rate, but with increased tolerance of mannitol and ABA in Arabidopsis on the sealed agar plates. The ABA induced stomatal closure is impaired in MeGRX232-OE Arabidopsis. Further analysis reveals that the overexpression of MeGRX232 leads to more ROS accumulation in guard cells. MeGRX232 can interact with TGA5 from Arabidopsis and MeTGA074 from cassava in vitro and in vivo. The results of microarray assays show that MeGRX232-OE affected the expression of a set of drought and oxidative stress related genes. Taken together, we demonstrated that CC-type GRXs involved in ABA signal transduction and play roles in response to drought through regulating stomatal closure.Novelty statement:We found that drought and ABA stress induced the transcription of CC-type glutaredoxins (GRXs) in cassava leaves. Ectopic expression of one of them, MeGRX232 in Arabidopsis affected the sensitivity to abscisic acid (ABA) and mannitol, and caused drought hypersensitivity by impairment of ABA-dependent stomatal closure.


2018 ◽  
Author(s):  
Hualiang Pi ◽  
John D. Helmann

AbstractThe ferric uptake regulator (Fur) is the global iron biosensor in many bacteria. Fur functions as an iron-activated transcriptional repressor for most of its regulated genes. There are a few examples where holo-Fur activates transcription, either directly or indirectly. Recent studies suggest that apo-Fur might also act as a positive regulator and, besides iron metabolism, the Fur regulon might encompass other biological processes such as DNA synthesis, energy metabolism, and biofilm formation. Here, we obtained a genomic view of the Fur regulatory network in Bacillus subtilis using ChIP-seq. Besides the known Fur target sites, 70 putative DNA binding sites were identified, and the vast majority had higher occupancy under iron sufficient conditions. Among the new sites detected, a Fur binding site in the promoter region of the catDE operon is of particular interest. This operon, encoding catechol 2,3-dioxygenase, is critical for catechol degradation and is under negative regulation by CatR and YodB. These three repressors function cooperatively to regulate the transcription of catDE, with Fur functioning as a sensor of iron-limitation and CatR as the major sensor of catechol stress. Genetic analysis suggests that CatDE is involved in metabolism of the catecholate siderophore bacillibactin, particularly when bacillibactin is constitutively produced and accumulates intracellularly, potentially generating endogenous toxic catechol derivatives. This study documents a role for catechol degradation in bacillibactin metabolism, and provides evidence that catechol 2,3-dioxygenase can detoxify endogenously produced catechol substrates in addition to its more widely studied role in biodegradation of environmental aromatic compounds and pollutants.ImportanceMany bacteria synthesize high affinity iron chelators (siderophores). Siderophore-mediated iron acquisition is an efficient and widely utilized strategy for bacteria to meet their cellur iron requirements. One prominent class of siderophores uses catecholate groups to chelate iron. B. subtilis bacillibactin, structurally similar to enterobactin (made by enteric bacteria), is a triscatecholate siderophore that is hydrolyzed to monomeric units after import to release iron. However, the ultimate fate of these catechol compounds and their potential toxicity have not been defined previously. Here, we performed genome-wide identification of Fur binding sites in vivo and uncovered a connection between catechol degradation and bacillibactin metabolism in B. subtilis. Beside its role in detoxification of environmental catechols, the catechol 2,3-dioxygenase encoded by catDE also protects cells from intoxication by endogeous bacillibactin-derived catechol metabolites under iron-limited conditions. These findings shed light on the degradation pathway and precursor recycling of the catecholate siderophores.


2019 ◽  
Author(s):  
Jennifer L. Chlebek ◽  
Hannah Q. Hughes ◽  
Aleksandra S. Ratkiewicz ◽  
Rasman Rayyan ◽  
Joseph Che-Yen Wang ◽  
...  

AbstractBacterial type IV pili are critical for diverse biological processes including horizontal gene transfer, surface sensing, biofilm formation, adherence, motility, and virulence. These dynamic appendages extend and retract from the cell surface. In many type IVa pilus systems, extension occurs through the action of an extension ATPase, often called PilB, while optimal retraction requires the action of a retraction ATPase, PilT. Many type IVa systems also encode a homolog of PilT called PilU. However, the function of this protein has remained unclear becausepilUmutants exhibit inconsistent phenotypes among type IV pilus systems and because it is relatively understudied compared to PilT. Here, we study the type IVa competence pilus ofVibrio choleraeas a model system to define the role of PilU. We show that the ATPase activity of PilU is critical for pilus retraction in PilT Walker A and/or Walker B mutants. PilU does not, however, contribute to pilus retraction in ΔpilTstrains. Thus, these data suggest that PilU is abona fideretraction ATPase that supports pilus retraction in a PilT-dependent manner. We also found that a ΔpilUmutant exhibited a reduction in the force of retraction suggesting that PilU is important for generating maximal retraction forces. Additionalin vitroandin vivodata show that PilT and PilU act as independent homo-hexamers that may form a complex to facilitate pilus retraction. Finally, we demonstrate that the role of PilU as a PilT-dependent retraction ATPase is conserved inAcinetobacter baylyi, suggesting that the role of PilU described here may be broadly applicable to other type IVa pilus systems.Author SummaryAlmost all bacterial species use thin surface appendages called pili to interact with their environments. These structures are critical for the virulence of many pathogens and represent one major way that bacteria share DNA with one another, which contributes to the spread of antibiotic resistance. To carry out their function, pili dynamically extend and retract from the bacterial surface. Here, we show that retraction of pili in some systems is determined by the combined activity of two motor ATPase proteins.


1999 ◽  
Vol 181 (5) ◽  
pp. 1436-1443 ◽  
Author(s):  
Jon H. Heinrichs ◽  
LaVette E. Gatlin ◽  
Charles Kunsch ◽  
Gil H. Choi ◽  
Mark S. Hanson

ABSTRACT The acquisition of iron by pathogenic bacteria is often a crucial step in establishing infection. To accomplish this, many bacteria, including Staphylococcus aureus, produce low-molecular-weight iron-chelating siderophores. However, the secretion and transport of these molecules in gram-positive organisms are poorly understood. The sequence, organization, and regulation of genes involved in siderophore transport are conserved among gram-negative bacteria. We used this information to identify a putative siderophore transport locus from an S. aureus genomic sequence database. This locus contains three predicted open reading frames with a high degree of homology to genes involved in siderophore uptake in several bacterial species, in particular the cbrlocus of the plant pathogen Erwinia chrysanthemi. The first gene in the locus, which we have designated sir for staphylococcal iron regulated, encodes a putative lipoprotein with a molecular mass of 37 kDa. The open reading frame is preceded by a 19-bp region of dyad symmetry with homology for operator sequences controlling iron-regulated expression of genes in other bacteria. Fur titration experiments indicate that this region of dyad symmetry is sufficient for Fur-dependent regulation in Escherichia coli. The expression of this gene was repressed, in a dose-dependent manner, by the addition of iron to the S. aureus culture medium. sir-encoded proteins may be involved in iron acquisition in vivo and therefore may be targets for antimicrobial agents.


Author(s):  
H. Engelhardt ◽  
R. Guckenberger ◽  
W. Baumeister

Bacterial photosynthetic membranes contain, apart from lipids and electron transport components, reaction centre (RC) and light harvesting (LH) polypeptides as the main components. The RC-LH complexes in Rhodopseudomonas viridis membranes are known since quite seme time to form a hexagonal lattice structure in vivo; hence this membrane attracted the particular attention of electron microscopists. Contrary to previous claims in the literature we found, however, that 2-D periodically organized photosynthetic membranes are not a unique feature of Rhodopseudomonas viridis. At least five bacterial species, all bacteriophyll b - containing, possess membranes with the RC-LH complexes regularly arrayed. All these membranes appear to have a similar lattice structure and fine-morphology. The lattice spacings of the Ectothiorhodospira haloohloris, Ectothiorhodospira abdelmalekii and Rhodopseudomonas viridis membranes are close to 13 nm, those of Thiocapsa pfennigii and Rhodopseudomonas sulfoviridis are slightly smaller (∼12.5 nm).


Sign in / Sign up

Export Citation Format

Share Document