scholarly journals Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity

2017 ◽  
Vol 114 (11) ◽  
pp. 2842-2847 ◽  
Author(s):  
Andreas Hartmann ◽  
Tom Gleeson ◽  
Yoshihide Wada ◽  
Thorsten Wagener

Our environment is heterogeneous. In hydrological sciences, the heterogeneity of subsurface properties, such as hydraulic conductivities or porosities, exerts an important control on water balance. This notably includes groundwater recharge, which is an important variable for efficient and sustainable groundwater resources management. Current large-scale hydrological models do not adequately consider this subsurface heterogeneity. Here we show that regions with strong subsurface heterogeneity have enhanced present and future recharge rates due to a different sensitivity of recharge to climate variability compared with regions with homogeneous subsurface properties. Our study domain comprises the carbonate rock regions of Europe, Northern Africa, and the Middle East, which cover ∼25% of the total land area. We compare the simulations of two large-scale hydrological models, one of them accounting for subsurface heterogeneity. Carbonate rock regions strongly exhibit “karstification,” which is known to produce particularly strong subsurface heterogeneity. Aquifers from these regions contribute up to half of the drinking water supply for some European countries. Our results suggest that water management for these regions cannot rely on most of the presently available projections of groundwater recharge because spatially variable storages and spatial concentration of recharge result in actual recharge rates that are up to four times larger for present conditions and changes up to five times larger for potential future conditions than previously estimated. These differences in recharge rates for strongly heterogeneous regions suggest a need for groundwater management strategies that are adapted to the fast transit of water from the surface to the aquifers.

2012 ◽  
Vol 16 (6) ◽  
pp. 1667-1683 ◽  
Author(s):  
J. R. Raposo ◽  
J. Molinero ◽  
J. Dafonte

Abstract. Quantifying groundwater recharge in crystalline rocks presents great difficulties due to the high heterogeneity of the underground medium (mainly, due to heterogeneity in fracture network, which determines hydraulic parameters of the bedrock like hydraulic conductivity or effective porosity). Traditionally these rocks have been considered to have very low permeability, and their groundwater resources have usually been neglected; however, they can be of local importance when the bedrock presents a net of well-developed fractures. The current European Water Framework Directive requires an efficient management of all groundwater resources; this begins with a proper knowledge of the aquifer and accurate recharge estimation. In this study, an assessment of groundwater resources in the Spanish hydrologic district of Galicia-Costa, dominated by granitic and metasedimentary rocks, was carried out. A water-balance modeling approach was used for estimating recharge rates in nine pilot catchments representatives of both geologic materials. These results were cross-validated with an independent technique, i.e. the chloride mass balance (CMB). A relation among groundwater recharge and annual precipitation according to two different logistic curves was found for both granites and metasedimentary rocks, thus allowing the parameterization of recharge by means of only a few hydrogeological parameters. Total groundwater resources in Galicia-Costa were estimated to be 4427 hm3 yr−1. An analysis of spatial and temporal variability of recharge was also carried out.


2015 ◽  
Vol 10 (3) ◽  
pp. 465-473
Author(s):  
B. M. Harley ◽  
M. Gamache ◽  
K. K. Masterson ◽  
R. H. Fitzgerald

The sustainable development and management of groundwater resources in coastal aquifers is complex and, historically, challenging to accomplish. Groundwater models play an essential role in addressing these complexities and providing the basis for planning future sustainable development. For more than 25 years, the authors have applied three-dimensional groundwater models to manage large scale coastal aquifers. The paper will present case studies demonstrating the application of groundwater models to evaluate conditions in complex coastal environments and to develop sustainable groundwater management strategies. These studies include Long Island, a sole source aquifer system in New York serving nearly 3 million people; aquifers in Southern California where injection barriers are used to prevent saltwater intrusion; and Savannah, Georgia in the southeastern US, where concentrated groundwater pumping has contributed to saltwater intrusion at a nearby resort island, and planning is underway to ensure a sustainable groundwater supply to both local industries and municipalities.


2021 ◽  
Author(s):  
Abolfazl Rezaei

Abstract The ability to predict future variability of groundwater resources in time and space is of critical
importance in society’s adaptation to climate variability and change. Periodic control of large scale ocean-atmospheric circulations on groundwater levels proposes a potentially effective source of longer term forecasting capability. In this study, as a first national-scale assessment, we use the continues wavelet transform, global power spectrum, and wavelet coherence analyses to quantify the controls of the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and El Niño Southern Oscillation (ENSO) over the representative groundwater levels of the 24 principal aquifers, scattered across different 14 climate zones of Iran. The results demonstrate that aquifer storage variations are partially controlled by annual to interdecadal climate variability and are not solely a function of pumping variations. Moreover, teleconnections are observed to be both frequency and time specific. The significant coherence patterns between the climate indices and groundwater levels are observed at five frequency bands of the annual (~1-yr), interannual (2-4- and 4-6-yr), decadal (8-12-yr), and interdecadal (14-18yr), consistent with the dominant modes of climate indices. AMO’s strong footprint is observed at interdecadal and annual modes of groundwater levels while PDO’s highest imprint is seen in interannual, decadal, and interdecadal modes. The highest controlling influence of ENSO is observed across the decadal and interannual modes whereas the NAO’s footprint is marked at annual and interdecadal frequency bands. Further, it is observed that the groundwater variability being higher modulated by a combination of large-scale atmospheric circulations rather than each individual index. The decadal and interdecadal oscillation modes constitute the dominant modes in Iranian aquifers. Findings also mark the unsaturated zone contribution in damping and lagging of the climate variability modes, particularly for the higher frequency indices of ENSO and NAO where the groundwater variability is observed to be more correlated with lower frequent climate circulations such as PDO and AMO, rather than ENSO and NAO. Finally, it is found that the data length can significantly affect the teleconnections if the time series are not contemporaneous and only one value of coherence/correlation is computed for each particular series instead of separate computations for different frequency bands and different time spans.


2020 ◽  
Author(s):  
Shovon Barua ◽  
Ian Cartwright ◽  
P. Evan Dresel ◽  
Edoardo Daly

Abstract. Understanding recharge in semi-arid areas is important for the sustainable management of groundwater resources. This study focuses on estimating groundwater recharge rates and understanding the impacts of land-use changes on recharge in a semi-arid area. Two adjacent catchments in southeast Australia were cleared ~180 years ago following European settlement; in one of these catchments eucalypt plantation forest was subsequently established ~ 20 years ago. Chloride mass balance yields recharge rates of 0.2 to 61.6 mm yr−1 (typically up to 11.2 mm yr−1). The lower of these values probably represent recharge rates prior to land clearing, whereas the higher likely reflects recharge rates following initial land clearing. The low pre-land clearing recharge rates are consistent with the presence of groundwater that has residence times that are up to 24,700 years (calculated using radiocarbon) and the moderate to low hydraulic conductivities (0.31 to 0.002 m day−1) of the clay-rich aquifers. Recharge rates estimated from tritium activities and water table fluctuations reflect those following the initial land clearing. However, recharge rates estimated using water table fluctuations (15 to 500 mm yr−1) are significantly higher than those estimated using tritium renewal rates (0.01 to 89 mm yr−1; typically


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3090 ◽  
Author(s):  
Ronaldo Medeiros dos Santos ◽  
Sérgio Koide ◽  
Bruno Esteves Távora ◽  
Daiana Lira de Araujo

One of the first steps to implement a policy for groundwater resources management is knowing the groundwater recharge. However, the unavailability of data and resources to execute field studies increase the uncertainty associated with the estimation of groundwater recharge. To fill this gap, the present work aimed to propose a method to predict groundwater recharge at non-instrumented hydrographic basins. The approach proposed is based on using an abacus to execute the transposition and/or regionalization of results generated in an experimental basin. The methodology comprised the estimation and mapping of recharge rates in the experimental basin using three distinct approaches—numerical modelling of the saturated zone, distributed hydrological modelling of the vadose zone, and the method of fluctuation of the water table elevation—and the following generation of the abacus, with average recharge values for combinations of soil class, land use/cover and slope using geographic information systems. The results indicate that the abacus is consistent for some Ferrasol areas, that the reliability of average regionalized values depends on the complexity of the physical environment—soil class, land use/cover, and slope—and that new studies, focusing on the hydro-physical characterization of soils, might produce more reliable estimations.


2020 ◽  
pp. SP507-2020-174
Author(s):  
Suneel Kumar Joshi ◽  
Shive Prakash Rai ◽  
Rajiv Sinha

AbstractThe isotopic composition of water has been widely used to investigate groundwater dynamics and recharge processes. In the present study, we have analysed the isotopic composition of groundwater, and of Sutlej River, Yamuna River, Ghaggar River and canal water from the Sutlej-Yamuna plain in NW India. We document spatial and depth-related variations in δ18O and deuterium excess (d-excess) values of groundwater in three zones based on topography and slope (zones I–III) from NE to SW. In Zone I, precipitation is the main recharge source for groundwater, as indicated by the isotopic values. We infer mixed recharge from precipitation and irrigation return flow in Zone II. Zone III records depleted δ18O and higher d-excess values in most of the groundwater samples, suggesting active recharge from canals. Further, we have calculated the contribution of canal water in groundwater using the hydrograph separation approach and have also quantified the uncertainty in its estimation. We note significant spatial and depth-related variability in the canal water contribution to groundwater recharge. The canal contribution is as high as 83 ± 10% at 18 m below ground level (bgl) in Zone III, and as low as 5 ± 3% at 43 m bgl in Zone II. The present study provides the baseline data on recharge processes in NW India, which is critical for developing sustainable management strategies for groundwater resources in this region.


2013 ◽  
Vol 14 (4) ◽  
pp. 1009-1034 ◽  
Author(s):  
Bin Yong ◽  
Liliang Ren ◽  
Yang Hong ◽  
Jonathan J. Gourley ◽  
Xi Chen ◽  
...  

Abstract Hydrological processes in most semiarid regions on Earth have been changing under the impacts of climate change, human activities, or combinations of the two. This paper first presents a trend analysis of the spatiotemporal changes in water resources and then diagnoses their underlying atmospheric and socioeconomic causes over 10 catchments in the Laoha basin, a typical semiarid zone of northeast China. The impacts of climate variability and human activities on streamflow change were quantitatively evaluated by the VIC (Variable Infiltration Capacity) model. First, results indicate that six out of the 10 studied catchments have statistically significant downward trends in annual streamflow; however, there is no significant change of annual precipitation for all catchments. Two abrupt changes of annual streamflow at 1979 and 1998 are identified for the four largest catchments. Second, the Laoha basin generally experienced three evident dry–wet pattern switches during the past 50 years. Furthermore, this basin is currently suffering from unprecedented water shortages. Large-scale climate variability has affected the local natural hydrologic system. Third, quantitative evaluation shows human activities were the main driving factors for the streamflow reduction with contributions of approximately 90% for the whole basin. A significant increase in irrigated area, which inevitably resulted in tremendous agricultural water consumption, is the foremost culprit contributing to the dramatic runoff reduction, especially at midstream and downstream of the Laoha basin. This study is expected to enable policymakers and stakeholders to make well-informed, short-term practice decisions and better plan long-term water resource and ecoenvironment management strategies.


2010 ◽  
Vol 26 ◽  
pp. 93-97 ◽  
Author(s):  
E. Bartolini ◽  
P. Claps ◽  
P. D'Odorico

Abstract. Winter snowfall and its temporal variability are important factors in the development of water management strategies for snow-dominated regions. For example, mountain regions of Europe rely on snow for recreation, and on snowmelt for water supply and hydropower. It is still unclear whether in these regions the snow regime is undergoing any major significant change. Moreover, snow interannual variability depends on different climatic variables, such as precipitation and temperature, and their interplay with atmospheric and pressure conditions. This paper uses the EASE Grid weekly snow cover and Ice Extent database from the National Snow and Ice Data Center to assess the possible existence of trends in snow cover across Europe. This database provides a representation of snow cover fields in Europe for the period 1972–2006 and is used here to construct snow cover indices, both in time and space. These indices allow us to investigate the historical spatial and temporal variability of European snow cover fields, and to relate them to the modes of climate variability that are known to affect the European climate. We find that both the spatial and temporal variability of snow cover are strongly related to the Arctic Oscillation during wintertime. In the other seasons, weaker correlation appears between snow cover and the other patterns of climate variability, such as the East Atlantic, the East Atlantic West Russia, the North Atlantic Oscillation, the Polar Pattern and the Scandinavian Pattern.


1990 ◽  
Vol 21 (3) ◽  
pp. 185-194 ◽  
Author(s):  
Richard Thomsen

Public water supply in Europe relies very heavily on groundwater. Recharge of groundwater takes place mainly in the winter months. An analysis of winter rainfall data shows that current recharge rates are abnormally high, and that during several periods in the past the rate has been less than half the current value. A return to such low values could have catastrophic consequences, but even more modest drops would be serious. Useful predictions must be based on climatic models and the full use of climatic, paleohydrological and historical data.


2022 ◽  
Vol 3 ◽  
Author(s):  
Anurag Verma ◽  
Prabhakar Sharma

Growing dependence on groundwater to fulfill the water demands has led to continuous depletion of groundwater levels and, consequently, poses the maintenance of optimum groundwater and management challenge. The region of South Bihar faces regular drought and flood situations, and due to the excessive pumping, the groundwater resources are declining. Rainwater harvesting has been recommended for the region; however, there are no hydrogeological studies concerning groundwater recharge. Aquifer storage and recovery (ASR) is a managed aquifer recharge technique to store excess water in the aquifer through borewells to meet the high-water demand in the dry season. Therefore, this paper presents the hydrogeological feasibility for possible ASR installations in shallow aquifers of South Bihar with the help of flowing fluid electrical conductivity (FFEC) logging. For modeling, the well logging data of two shallow borewells (16- and 47-m depth) at Rajgir, Nalanda, were used to obtain the transmissivity and thickness of the aquifers. The estimated transmissivities were 804 m2/day with an aquifer thickness of 5 m (in between 11 and 16 m) at Ajatshatru Residential Hall (ARH) well. They were 353 and 1,154 m2/day with the aquifer thicknesses of 6 m (in between 16 and 22 m) and 2 m (in between 45 and 47 m), respectively, at Nalanda University Campus (NUC) well. Despite the acceptable transmissivities at these sites, those aquifers may not be fruitful for the medium- to large-scale (more than 100-m3/day injection rate) ASR as the thickness of the aquifers is relatively small and may not efficiently store and withdraw a large amount of water. However, these aquifers can be adequate for small (up to 20-m3/day injection rate) ASR, for example, groundwater recharge using rooftop water. For medium- to large-scale ASR, deeper aquifers need to be further explored on these sites or aquifers with similar characteristics.


Sign in / Sign up

Export Citation Format

Share Document