scholarly journals Glucocorticoids promote Von Hippel Lindau degradation and Hif-1α stabilization

2017 ◽  
Vol 114 (37) ◽  
pp. 9948-9953 ◽  
Author(s):  
Andrea Vettori ◽  
David Greenald ◽  
Garrick K. Wilson ◽  
Margherita Peron ◽  
Nicola Facchinello ◽  
...  

Glucocorticoid (GC) and hypoxic transcriptional responses play a central role in tissue homeostasis and regulate the cellular response to stress and inflammation, highlighting the potential for cross-talk between these two signaling pathways. We present results from an unbiased in vivo chemical screen in zebrafish that identifies GCs as activators of hypoxia-inducible factors (HIFs) in the liver. GCs activated consensus hypoxia response element (HRE) reporters in a glucocorticoid receptor (GR)-dependent manner. Importantly, GCs activated HIF transcriptional responses in a zebrafish mutant line harboring a point mutation in the GR DNA-binding domain, suggesting a nontranscriptional route for GR to activate HIF signaling. We noted that GCs increase the transcription of several key regulators of glucose metabolism that contain HREs, suggesting a role for GC/HIF cross-talk in regulating glucose homeostasis. Importantly, we show that GCs stabilize HIF protein in intact human liver tissue and isolated hepatocytes. We find that GCs limit the expression of Von Hippel Lindau protein (pVHL), a negative regulator of HIF, and that treatment with the c-src inhibitor PP2 rescued this effect, suggesting a role for GCs in promoting c-src–mediated proteosomal degradation of pVHL. Our data support a model for GCs to stabilize HIF through activation of c-src and subsequent destabilization of pVHL.

2004 ◽  
Vol 24 (4) ◽  
pp. 1582-1594 ◽  
Author(s):  
Zhongdong Huang ◽  
Jolinda A. Traugh ◽  
J. Michael Bishop

ABSTRACT Pak2 is a serine/threonine kinase that participates in the cellular response to stress. Among the potential substrates for Pak2 is the protein Myc, encoded by the proto-oncogene MYC. Here we demonstrate that Pak2 phosphorylates Myc at three sites (T358, S373, and T400) and affects Myc functions both in vitro and in vivo. Phosphorylation at all three residues reduces the binding of Myc to DNA, either by blocking the requisite dimerization with Max (through phosphorylation at S373 and T400) or by interfering directly with binding to DNA (through phosphorylation at T358). Phosphorylation by Pak2 inhibits the ability of Myc to activate transcription, to sustain cellular proliferation, to transform NIH 3T3 cells in culture, and to elicit apoptosis on serum withdrawal. These results indicate that Pak2 is a negative regulator of Myc, suggest that inhibition of Myc plays a role in the cellular response to stress, and raise the possibility that Pak2 may be the product of a tumor suppressor gene.


Blood ◽  
2002 ◽  
Vol 99 (3) ◽  
pp. 1014-1022 ◽  
Author(s):  
Qi Zhu ◽  
Ji-Wang Zhang ◽  
Hai-Qing Zhu ◽  
Yu-Lei Shen ◽  
Maria Flexor ◽  
...  

Abstract Acute promyelocytic leukemia (APL) is characterized by the specific chromosome translocation t(15;17) with promyelocytic leukemia-retinoic acid receptor-α (PML-RARA) fusion gene and the ability to undergo terminal differentiation as an effect of all-trans retinoic acid (ATRA). Recently, arsenic trioxide (As2O3) has been identified as an alternative therapy in patients with both ATRA-sensitive and ATRA-resistant APL. At the cellular level, As2O3 triggers apoptosis and a partial differentiation of APL cells in a dose-dependent manner; both effects are observed in vivo among patients with APL and APL animal models. To further explore the mechanism of As2O3-induced differentiation, the combined effects of arsenic and a number of other differentiation inducers on APL cell lines (NB4 and NB4-R1) and some fresh APL cells were examined. The data show that a strong synergy exists between a low concentration of As2O3 (0.25 μM) and the cyclic adenosine monophosphate (cAMP) analogue, 8-CPT-cAMP, in fully inducing differentiation of NB4, NB4-R1, and fresh APL cells. Furthermore, cAMP facilitated the degradation of As2O3-mediated fusion protein PML-RARα, a process considered to play a key role in overcoming the differentiation arrest of APL cells. On the other hand, cAMP could significantly inhibit cell growth by modulating several major players in G1/S transition regulation. Interestingly, H89, an antagonist of protein kinase A, could block the differentiation-inducing effect of As2O3potentiated by cAMP. These results thus support the existence of a novel signaling cross-talk for APL maturation, which may deepen understanding of As2O3-induced differentiation in vivo, and thus furnish insights for new therapeutic strategies.


2019 ◽  
Vol 20 (18) ◽  
pp. 4422 ◽  
Author(s):  
Fusheng Jiang ◽  
Meiya Li ◽  
Hongye Wang ◽  
Bin Ding ◽  
Chunchun Zhang ◽  
...  

Ethanol extract of Bletilla striata has remarkable anti-inflammatory and anti-pulmonary fibrosis activities in the rat silicosis model. However, its active substances and molecular mechanism are still unclear. To uncover the active ingredients and potential molecular mechanism of the Bletilla striata extract, the lipopolysaccharide (LPS)-induced macrophage inflammation model and phospho antibody array were used. Coelonin, a dihydrophenanthrene compound was isolated and identified. It significantly inhibited LPS-induced interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression at 2.5 μg/mL. The microarray data indicate that the phosphorylation levels of 32 proteins in the coelonin pre-treated group were significantly down-regulated. In particular, the phosphorylation levels of the key inflammatory regulators factor nuclear factor-kappa B (NF-κB) were significantly reduced, and the negative regulator phosphatase and tensin homologue on chromosome ten (PTEN) was reduced. Moreover, the phosphorylation level of cyclin dependent kinase inhibitor 1B (p27Kip1), another downstream molecule regulated by PTEN was also reduced significantly. Western blot and confocal microscopy results confirmed that coelonin inhibited LPS-induced PTEN phosphorylation in a dose-dependent manner, then inhibited NF-κB activation and p27Kip1 degradation by regulating the phosphatidylinositol-3-kinases/ v-akt murine thymoma viral oncogene homolog (PI3K/AKT) pathway negatively. However, PTEN inhibitor co-treatment analysis indicated that the inhibition of IL-1β, IL-6 and TNF-α expression by coelonin was independent of PTEN, whereas the inhibition of p27Kip1 degradation resulted in cell-cycle arrest in the G1 phase, which was dependent on PTEN. The anti-inflammatory activity of coelonin in vivo, which is one of the main active ingredients of Bletilla striata, deserves further study.


2000 ◽  
Vol 278 (4) ◽  
pp. R956-R963 ◽  
Author(s):  
Jean-Michel Weber ◽  
Deena S. Shanghavi

The rate of hepatic glucose production (Ra glucose) of rainbow trout ( Oncorhynchus mykiss) was measured in vivo by continuous infusion of [6-3H]glucose and in vitro on isolated hepatocytes to examine the role of epinephrine (Epi) in its regulation. By elevating Epi concentration and/or blocking β-adrenoreceptors with propranolol (Prop), our goals were to investigate the mechanism for Epi-induced hyperglycemia to determine the possible role played by basal Epi concentration in maintaining resting Ra glucose and to assess indirect effects of Epi in the intact animal. In vivo infusion of Epi caused hyperglycemia (3.75 ± 0.16 to 8.75 ± 0.54 mM) and a twofold increase in Ra glucose (6.57 ± 0.79 to 13.30 ± 1.78 μmol ⋅ kg− 1 ⋅ min− 1, n = 7), whereas Prop infusion decreased Ra from 7.65 ± 0.92 to 4.10 ± 0.56 μmol ⋅ kg− 1 ⋅ min− 1( n = 10). Isolated hepatocytes increased glucose production when treated with Epi, and this response was abolished in the presence of Prop. We conclude that Epi-induced trout hyperglycemia is entirely caused by an increase in Ra glucose, because the decrease in the rate of glucose disappearance normally seen in mammals does not occur in trout. Basal circulating levels of Epi are involved in maintaining resting Ra glucose. Epi stimulates in vitro glucose production in a dose-dependent manner, and its effects are mainly mediated by β-adrenoreceptors. Isolated trout hepatocytes produce glucose at one-half the basal rate measured in vivo, even when diet, temperature, and body size are standardized, and basal circulating Epi is responsible for part of this discrepancy. The relative increase in Ra glucose after Epi stimulation is similar in vivo and in vitro, suggesting that indirect in vivo effects of Epi, such as changes in hepatic blood flow or in other circulating hormones, do not play an important role in the regulation of glucose production in trout.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1330-1330
Author(s):  
David N. Haylock ◽  
Genevieve A. Whitty ◽  
Brenda Williams ◽  
Melonie J. Storan ◽  
Susie K. Nilsson

Abstract Osteoblasts are a key cellular component of the hemopoietic stem cell (HSC) niche and directly regulate the HSC pool. Molecules synthesised by osteoblasts both promote or inhibit HSC proliferation. Osteopontin (Opn) is an osteoblast produced, RGD containing protein with roles in cell adhesion and migration. Until recently, the role of Opn in hemopoiesis was seen as restricted to the regulation of bone turnover. However, from analysis of hemopoiesis in the Opn null mouse, we have demonstrated that Opn plays a critical role in regulating the HSC pool. Furthermore Opn is critical in trans-marrow migration and lodgement of HSC within the BM after transplantation. When added to in vitro HSC cultures, exogenous thrombin-cleaved Opn also inhibits cell proliferation and potently suppresses HSC differentiation. We have now demonstrated that this interaction occurs in an RGD-independent manner via the cryptic SVVYGLR epitope revealed on the N-terminal fragment of Opn following thrombin cleavage. This epitope has previously been shown to bind to α4β1 and α9β1. HSC are known to express α4β1, but we have now shown that within the HSC pool this occurs in a differential manner, mimicking that of CD38, with more committed CD34+CD38+ cord blood progenitors having the highest levels of expression. In addition, we have shown the previously unrecognised characteristic of human marrow and cord blood HSC, the expression of α9β1, which also occurs in a differential manner, but mimicking CD34. Expression of α9β1 is highest on cord blood CD34+CD38− cells, a population highly enriched for HSC. Using the synthetic SVVYGLR peptide in culture, we re-capitulated the thrombin-cleaved Opn induced suppression of HSC differentiation in a dose dependent manner. Antibody blocking experiments demonstrated that binding to this peptide was occurring through both α4β1 and α9β1. In contrast, suppression of HSC proliferation and differentiation did not occur through the upstream alternate α4β1 binding site. Furthermore, we have now demonstrated endogenous binding of Opn to α4β1 and α9β1 to cord blood HSC in vivo. Together, these data provide strong evidence that Opn is an important component of the HSC niche which acts as a physiological negative regulator. Furthermore, our studies identify the previously unrecognised characteristic of HSC, the expression of α9β1, which together with α4β1 provides two receptors on HSC with differing expression signatures and potentially a mechanism for fine tunning the physiological effects of Opn.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 482-482
Author(s):  
Kevin Wei ◽  
Aaron C. Logan ◽  
Heather Wakelee ◽  
M. Celeste Simon ◽  
Calvin J. Kuo

Abstract Vascular endothelial growth factor (VEGF) exerts crucial functions during pathological angiogenesis and normal physiology. We have previously reported increased hematocrit (60–75%) and erythrocytosis after high-grade VEGF inhibition by diverse methods, including adenoviral expression of soluble VEGF receptor (VEGFR) ectodomains, recombinant VEGF Trap protein and the VEGFR2-selective antibody DC101. Erythrocytosis occurred in both mice and primate models in an erythropoietin (Epo)-dependent manner, with unexpected >40-fold induction of hepatic erythropoietin through a hypoxia- and HIF-1α-independent mechanism involving disruption of endothelial-hepatocyte cross-talk. To identify candidate transcription factors required for VEGF inhibition-dependent hepatic Epo induction, we performed hepatic gene expression profiling, revealing up-regulation of HIF-2α target genes (Loxl2 and Cited2). Systemic VEGF inhibition resulted in hepatic stabilization of the HIF-2α protein without concomitant liver hypoxia. Conversely, hepatocyte-specific deletion of the Hif2a gene in Hif2aflox/flox mice strongly diminished the hematocrit elevation and hepatic Epo synthesis after systemic VEGF inhibition, indicating an essential role for HIF-2α. These results are consistent with other reports indicating potent regulation of hepatic Epo production by HIF-2α. In addition to the previously characterized Epo-dependent erythrocytosis, RBC mass monitoring in VEGF inhibitor-treated mice reveals that an erythrocytosis-independent mechanism also contributes to elevated hematocrit. VEGF inhibition initially moderately elevates hematocrit from a baseline of 47% to approximately 50–55% without a parallel increase in RBC mass or reticulocyte index. This initial hematocrit elevation (phase 1) occurs over the first 5 days of VEGF inhibition and is associated with decreased plasma volume (PV) as measured by Evans blue dye injection. Subsequently, a persistent erythrocytosis ensues, as reflected by increased RBC mass and reticulocytosis (phase 2) and is responsible for the vast majority of the erythrocytosis observed with stringent in vivo VEGF inhibition. Together, decreased PV (phase 1) with elevated erythrocytosis (phase 2) combine to maximally elevate hematocrit (near 75%) under stringent VEGF inhibition. Notably, phase 2 but not phase 1 hematocrit elevation and Epo induction were ablated by hepatocyte Hif2a gene deletion, again suggesting that phase 1 elevation arises through distinct mechanisms. Clinical implications of our work include the use of VEGF inhibitors for the simultaneous treatment of malignancy and anemia as well as the use of hematocrit and/or Epo as surrogate markers for the efficacy of in vivo VEGF inhibition. Accordingly, we will summarize our initial attempts at prospective monitoring of these parameters in cancer patient populations treated with VEGF inhibitors. Overall, these data highlight unexpected physiologic consequences of VEGF inhibition and indicate that VEGF is a previously unsuspected negative regulator of hepatic Epo synthesis and erythrocytosis via HIF-2α-dependent and -independent mechanisms.


2007 ◽  
Vol 293 (3) ◽  
pp. L686-L692 ◽  
Author(s):  
Kosuke Kato ◽  
Wenju Lu ◽  
Hirofumi Kai ◽  
K. Chul Kim

MUC1 is a membrane-tethered mucin-like glycoprotein expressed on the surface of various mucosal epithelial cells as well as hematopoietic cells. Recently, we showed that MUC1 suppresses flagellin-induced Toll-like receptor (TLR) 5 signaling both in vivo and in vitro through cross talk with TLR5. In this study, we determined whether phosphoinositide 3-kinase (PI3K), a negative regulator of TLR5 signaling, is involved in the cross talk between MUC1 and TLR5 using various genetically modified epithelial cell lines. Our results showed 1) activation of MUC1 induced recruitment of the PI3K regulatory subunit p85 to the MUC1 cytoplasmic tail (CT) as well as Akt phosphorylation, 2) MUC1-induced Akt phosphorylation required the presence of Tyr20 within the PI3K binding motif of the MUC1 CT, and 3) mutation of Tyr20 or pharmacological inhibition of PI3K activation failed to block MUC1-induced suppression of TLR5 signaling. We conclude that whereas PI3K is downstream of MUC1 activation and negatively regulates TLR5 signaling, it is not responsible for MUC1-induced suppression of TLR5 signaling.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Eric Engelbrecht ◽  
Michel V Levesque ◽  
Liqun He ◽  
Michael Vanlandewijck ◽  
Anja Nitzsche ◽  
...  

Despite the medical importance of G protein-coupled receptors (GPCRs), in vivo cellular heterogeneity of GPCR signaling and downstream transcriptional responses are not understood. We report the comprehensive characterization of transcriptomes (bulk and single-cell) and chromatin domains regulated by sphingosine 1-phosphate receptor-1 (S1PR1) in adult mouse aortic endothelial cells. First, S1PR1 regulates NFκB and nuclear glucocorticoid receptor pathways to suppress inflammation-related mRNAs. Second, S1PR1 signaling in the heterogenous endothelial cell (EC) subtypes occurs at spatially-distinct areas of the aorta. For example, a transcriptomically distinct arterial EC population at vascular branch points (aEC1) exhibits ligand-independent S1PR1/ß-arrestin coupling. In contrast, circulatory S1P-dependent S1PR1/ß-arrestin coupling was observed in non-branch point aEC2 cells that exhibit an inflammatory gene expression signature. Moreover, S1P/S1PR1 signaling regulates the expression of lymphangiogenic and inflammation-related transcripts in an adventitial lymphatic EC (LEC) population in a ligand-dependent manner. These insights add resolution to existing concepts of endothelial heterogeneity, GPCR signaling and S1P biology.


Author(s):  
Debbie Clements ◽  
Suzanne Miller ◽  
Roya Babaei-Jadidi ◽  
Mike Adam ◽  
S. Steven Potter ◽  
...  

Lymphangioleiomyomatosis (LAM) is a female specific cystic lung disease in which TSC2 deficient LAM cells, LAM-Associated Fibroblasts (LAFs) and other cell types infiltrate the lungs. LAM lesions can be associated with type II alveolar epithelial cells (AT2 cells). We hypothesised that the behaviour of AT2 cells in LAM is influenced locally by LAFs. We tested this hypothesis in patient samples and in vitro. In human LAM lung, nodular AT2 cells show enhanced proliferation when compared to parenchymal AT2 cells, demonstrated by increased Ki67 expression. Further, nodular AT2 cells express proteins associated with epithelial activation in other disease states including Matrix Metalloproteinase 7, and Fibroblast Growth Factor 7 (FGF7). In vitro, LAF conditioned medium is mitogenic and positively chemotactic for epithelial cells, increases the rate of epithelial repair and protects against apoptosis. In vitro, LAM patient-derived TSC2 null cells cocultured with LAFs upregulate LAF expression of the epithelial chemokine and mitogen FGF7, which is a potential mediator of fibroblast-epithelial crosstalk, in an mTOR dependent manner. In a novel in vitro model of LAM, ex vivo cultured LAM lung-derived microtissues promote both epithelial migration and adhesion. Our findings suggest that AT2 cells in LAM display a proliferative, activated phenotype and that fibroblast accumulation following LAM cell infiltration into the parenchyma contributes to this change in AT2 cell behaviour. Fibroblast-derived FGF7 may contribute to the cross-talk between LAFs and hyperplastic epithelium in vivo, but does not appear to be the main driver of the effects of LAFs on epithelial cells in vitro.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2896-2896
Author(s):  
Anita Hollenbeck ◽  
Stefanie Weber ◽  
Kathrin Händschke ◽  
Mandy Necke ◽  
Bertram Opalka ◽  
...  

Abstract Early thymic progenitors enter the thymus and are exposed to regional hypoxia while they develop in a step-wise manner to mature functional T-cells. Therefore, hypoxia might represent an important component of the highly specialized thymic microenvironment. On the molecular level the hypoxia-inducible factor pathway controls the cellular response to hypoxia. In this pathway, the von-Hippel-Lindau protein (pVHL) continuously mediates the destruction of the transcription factor hypoxia-inducible factor-1α (HIF-1α) under normoxic conditions. Under hypoxia HIF-1α degradation is inhibited leading to the activation of HIF-1α target genes. Others used lck-Cre transgene-mediated conditional in vivo deletion of the Vhl gene to study the role of the oxygen-sensing pathway in developing thymocytes and found normal numbers of early double-negative (DN; CD4-CD8-) thymocytes (Biju et al., Mol Cell Biol, 2004). However, lck-Cre deletion initiates at the DN3 (CD25+CD44-) stage leaving the Vhl locus of very early DN1 (CD25-CD44+), DN2 (CD25+CD44+) and DN3 thymocytes unaltered. Therefore, we here used the ubiquitous hematopoietic deleter strain vav-Cre to investigate the role of pVHL in very early thymocytes (vav-Cre;VhlloxP;loxP mice). Using a PCR-based strategy we confirmed complete deletion of the Vhl gene in this model. We observed unaltered DN1 and DN2 progenitor numbers, however in contrast to the published lck-cre-mediated system we consistently observed an up to twofold expansion of the DN3 cellular compartment. As the hypoxia-inducible factor pathway was shown to modulate NOTCH1 signaling we studied Notch1 expression on Vhl-deficient thymocytes. Strikingly, Notch1 expression was significantly increased on expanded Vhl null DN3 thymocytes. At the DN3 developmental stage selection of cells with an accurately re-arranged T-cell receptor β-locus occurs. Thus, we analyzed pre- and post-β-selection DN3 cells by CD28 staining. Interestingly, we found both pre- and post-β-selection DN3 subpopulations expanded. In order to investigate whether the progenitor expansion is mediated by the lack of HIF-1α inhibition in the Vhl-deficient context we studied DN3 thymocytes in a conditional hematopoietic HIF-1α gain-of-function model (vav-Cre;HIF1dPA). Overexpression of HIF-1α, which is insensitive to pVHL-mediated degradation in vav-Cre;HIF1dPAmice, also resulted in expanded DN3 thymocytes. In summary, we describe novel conditional models to genetically alter the hypoxia-inducible factor pathway within very early thymic progenitors. Genetic Vhl loss led to an expansion of DN3 thymocytes. This DN3 expansion is most likely due to the absence of HIF-1α-inhibition, because HIF-1α overexpression phenocopied the Vhl-deficient DN3 thymocyte expansion. Disclosures Dührsen: Celgene: Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document