scholarly journals Negative Control of the Myc Protein by the Stress-Responsive Kinase Pak2

2004 ◽  
Vol 24 (4) ◽  
pp. 1582-1594 ◽  
Author(s):  
Zhongdong Huang ◽  
Jolinda A. Traugh ◽  
J. Michael Bishop

ABSTRACT Pak2 is a serine/threonine kinase that participates in the cellular response to stress. Among the potential substrates for Pak2 is the protein Myc, encoded by the proto-oncogene MYC. Here we demonstrate that Pak2 phosphorylates Myc at three sites (T358, S373, and T400) and affects Myc functions both in vitro and in vivo. Phosphorylation at all three residues reduces the binding of Myc to DNA, either by blocking the requisite dimerization with Max (through phosphorylation at S373 and T400) or by interfering directly with binding to DNA (through phosphorylation at T358). Phosphorylation by Pak2 inhibits the ability of Myc to activate transcription, to sustain cellular proliferation, to transform NIH 3T3 cells in culture, and to elicit apoptosis on serum withdrawal. These results indicate that Pak2 is a negative regulator of Myc, suggest that inhibition of Myc plays a role in the cellular response to stress, and raise the possibility that Pak2 may be the product of a tumor suppressor gene.

2018 ◽  
Vol 19 (9) ◽  
pp. 2718 ◽  
Author(s):  
María Rizo-Gorrita ◽  
Irene Luna-Oliva ◽  
María-Ángeles Serrera-Figallo ◽  
José-Luis Gutiérrez-Pérez ◽  
Daniel Torres-Lagares

New zirconia-reinforced lithium silicate ceramics (ZLS) could be a viable alternative to zirconium (Y-TZP) in the manufacture of implantological abutments—especially in aesthetic cases—due to its good mechanical, optical, and biocompatibility properties. Although there are several studies on the ZLS mechanical properties, there are no studies regarding proliferation, spreading, or cytomorphometry. We designed the present study which compares the surface, cellular proliferation, and cellular morphology between Y-TZP (Vita YZ® T [Vita Zahnfabrik (Postfach, Germany)]) and ZLS (Celtra® Duo [Degudent (Hanau-Wolfgang, Germany)]). The surface characterization was performed with energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and optical profilometry. Human gingival fibroblasts (HGFs) were subsequently cultured on both materials and early cellular response and cell morphology were compared through nuclear and cytoskeletal measurement parameters using confocal microscopy. The results showed greater proliferation and spreading on the surface of Y-TZP. This could indicate that Y-TZP continues to be a gold standard in terms of transgingival implant material: Nevertheless, more in vitro and in vivo research is necessary to confirm the results obtained in this study.


2017 ◽  
Vol 114 (37) ◽  
pp. 9948-9953 ◽  
Author(s):  
Andrea Vettori ◽  
David Greenald ◽  
Garrick K. Wilson ◽  
Margherita Peron ◽  
Nicola Facchinello ◽  
...  

Glucocorticoid (GC) and hypoxic transcriptional responses play a central role in tissue homeostasis and regulate the cellular response to stress and inflammation, highlighting the potential for cross-talk between these two signaling pathways. We present results from an unbiased in vivo chemical screen in zebrafish that identifies GCs as activators of hypoxia-inducible factors (HIFs) in the liver. GCs activated consensus hypoxia response element (HRE) reporters in a glucocorticoid receptor (GR)-dependent manner. Importantly, GCs activated HIF transcriptional responses in a zebrafish mutant line harboring a point mutation in the GR DNA-binding domain, suggesting a nontranscriptional route for GR to activate HIF signaling. We noted that GCs increase the transcription of several key regulators of glucose metabolism that contain HREs, suggesting a role for GC/HIF cross-talk in regulating glucose homeostasis. Importantly, we show that GCs stabilize HIF protein in intact human liver tissue and isolated hepatocytes. We find that GCs limit the expression of Von Hippel Lindau protein (pVHL), a negative regulator of HIF, and that treatment with the c-src inhibitor PP2 rescued this effect, suggesting a role for GCs in promoting c-src–mediated proteosomal degradation of pVHL. Our data support a model for GCs to stabilize HIF through activation of c-src and subsequent destabilization of pVHL.


2019 ◽  
Vol 216 (5) ◽  
pp. 1120-1134 ◽  
Author(s):  
Yong Jae Shin ◽  
Jason K. Sa ◽  
Yeri Lee ◽  
Donggeon Kim ◽  
Nakho Chang ◽  
...  

Glioblastoma (GBM) is the most malignant brain tumor with profound genomic alterations. Tumor suppressor genes regulate multiple signaling networks that restrict cellular proliferation and present barriers to malignant transformation. While bona fide tumor suppressors such as PTEN and TP53 often undergo inactivation due to mutations, there are several genes for which genomic deletion is the primary route for tumor progression. To functionally identify putative tumor suppressors in GBM, we employed in vivo RNAi screening using patient-derived xenograft models. Here, we identified PIP4K2A, whose functional role and clinical relevance remain unexplored in GBM. We discovered that PIP4K2A negatively regulates phosphoinositide 3-kinase (PI3K) signaling via p85/p110 component degradation in PTEN-deficient GBMs and specifically targets p85 for proteasome-mediated degradation. Overexpression of PIP4K2A suppressed cellular and clonogenic growth in vitro and impeded tumor growth in vivo. Our results unravel a novel tumor-suppressive role of PIP4K2A for the first time and support the feasibility of combining oncogenomics with in vivo RNAi screen.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii97-ii97
Author(s):  
Diana Carvalho ◽  
Peter Richardson ◽  
Nagore Gene Olaciregui ◽  
Reda Stankunaite ◽  
Cinzia Emilia Lavarino ◽  
...  

Abstract Somatic mutations in ACVR1, encoding the serine/threonine kinase ALK2 receptor, are found in a quarter of children with the currently incurable brain tumour diffuse intrinsic pontine glioma (DIPG). Treatment of ACVR1-mutant DIPG patient-derived models with multiple inhibitor chemotypes leads to a reduction in cell viability in vitro and extended survival in orthotopic xenografts in vivo, though there are currently no specific ACVR1 inhibitors licensed for DIPG. Using an Artificial Intelligence-based platform to search for approved compounds which could be used to treat ACVR1-mutant DIPG, the combination of vandetanib and everolimus was identified as a possible therapeutic approach. Vandetanib, an approved inhibitor of VEGFR/RET/EGFR, was found to target ACVR1 (Kd=150nM) and reduce DIPG cell viability in vitro, but has been trialed in DIPG patients with limited success, in part due to an inability to cross the blood-brain-barrier. In addition to mTOR, everolimus inhibits both ABCG2 (BCRP) and ABCB1 (P-gp) transporter, and was synergistic in DIPG cells when combined with vandetanib in vitro. This combination is well-tolerated in vivo, and significantly extended survival and reduced tumour burden in an orthotopic ACVR1-mutant patient-derived DIPG xenograft model. Based on these preclinical data, three patients with ACVR1-mutant DIPG were treated with vandetanib and everolimus. These cases may inform on the dosing and the toxicity profile of this combination for future clinical studies. This bench-to-bedside approach represents a rapidly translatable therapeutic strategy in children with ACVR1 mutant DIPG.


2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 855
Author(s):  
Paola Serrano Martinez ◽  
Lorena Giuranno ◽  
Marc Vooijs ◽  
Robert P. Coppes

Radiotherapy is involved in the treatment of many cancers, but damage induced to the surrounding normal tissue is often inevitable. Evidence suggests that the maintenance of homeostasis and regeneration of the normal tissue is driven by specific adult tissue stem/progenitor cells. These tasks involve the input from several signaling pathways. Irradiation also targets these stem/progenitor cells, triggering a cellular response aimed at achieving tissue regeneration. Here we discuss the currently used in vitro and in vivo models and the involved specific tissue stem/progenitor cell signaling pathways to study the response to irradiation. The combination of the use of complex in vitro models that offer high in vivo resemblance and lineage tracing models, which address organ complexity constitute potential tools for the study of the stem/progenitor cellular response post-irradiation. The Notch, Wnt, Hippo, Hedgehog, and autophagy signaling pathways have been found as crucial for driving stem/progenitor radiation-induced tissue regeneration. We review how these signaling pathways drive the response of solid tissue-specific stem/progenitor cells to radiotherapy and the used models to address this.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 346
Author(s):  
Hui Ling Ma ◽  
Ana Carolina Urbaczek ◽  
Fayene Zeferino Ribeiro de Souza ◽  
Paulo Augusto Gomes Garrido Carneiro Leão ◽  
Janice Rodrigues Perussi ◽  
...  

Microfluidics is an essential technique used in the development of in vitro models for mimicking complex biological systems. The microchip with microfluidic flows offers the precise control of the microenvironment where the cells can grow and structure inside channels to resemble in vivo conditions allowing a proper cellular response investigation. Hence, this study aimed to develop low-cost, simple microchips to simulate the shear stress effect on the human umbilical vein endothelial cells (HUVEC). Differentially from other biological microfluidic devices described in the literature, we used readily available tools like heat-lamination, toner printer, laser cutter and biocompatible double-sided adhesive tapes to bind different layers of materials together, forming a designed composite with a microchannel. In addition, we screened alternative substrates, including polyester-toner, polyester-vinyl, glass, Permanox® and polystyrene to compose the microchips for optimizing cell adhesion, then enabling these microdevices when coupled to a syringe pump, the cells can withstand the fluid shear stress range from 1 to 4 dyne cm2. The cell viability was monitored by acridine orange/ethidium bromide (AO/EB) staining to detect live and dead cells. As a result, our fabrication processes were cost-effective and straightforward. The materials investigated in the assembling of the microchips exhibited good cell viability and biocompatibility, providing a dynamic microenvironment for cell proliferation. Therefore, we suggest that these microchips could be available everywhere, allowing in vitro assays for daily laboratory experiments and further developing the organ-on-a-chip concept.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3562
Author(s):  
Mitra Nair ◽  
Chelsea Bolyard ◽  
Tae Jin Lee ◽  
Balveen Kaur ◽  
Ji Young Yoo

Brain-specific angiogenesis inhibitor 1 (BAI1/ADGRB1) is an adhesion G protein-coupled receptor that has been found to play key roles in phagocytosis, inflammation, synaptogenesis, the inhibition of angiogenesis, and myoblast fusion. As the name suggests, it is primarily expressed in the brain, with a high expression in the normal adult and developing brain. Additionally, its expression is reduced in brain cancers, such as glioblastoma (GBM) and peripheral cancers, suggesting that BAI1 is a tumor suppressor gene. Several investigators have demonstrated that the restoration of BAI1 expression in cancer cells results in reduced tumor growth and angiogenesis. Its expression has also been shown to be inversely correlated with tumor progression, neovascularization, and peri-tumoral brain edema. One method of restoring BAI1 expression is by using oncolytic virus (OV) therapy, a strategy which has been tested in various tumor models. Oncolytic herpes simplex viruses engineered to express the secreted fragment of BAI1, called Vasculostatin (Vstat120), have shown potent anti-tumor and anti-angiogenic effects in multiple tumor models. Combining Vstat120-expressing oHSVs with other chemotherapeutic agents has also shown to increase the overall anti-tumor efficacy in both in vitro and in vivo models. In the current review, we describe the structure and function of BAI1 and summarize its application in the context of cancer treatment.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1334
Author(s):  
Ye Liu ◽  
Zahra Mohri ◽  
Wissal Alsheikh ◽  
Umber Cheema

The development of biomimetic, human tissue models is recognized as being an important step for transitioning in vitro research findings to the native in vivo response. Oftentimes, 2D models lack the necessary complexity to truly recapitulate cellular responses. The introduction of physiological features into 3D models informs us of how each component feature alters specific cellular response. We conducted a systematic review of research papers where the focus was the introduction of key biomimetic features into in vitro models of cancer, including 3D culture and hypoxia. We analysed outcomes from these and compiled our findings into distinct groupings to ascertain which biomimetic parameters correlated with specific responses. We found a number of biomimetic features which primed cancer cells to respond in a manner which matched in vivo response.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 861
Author(s):  
Elizabeth E. Niedert ◽  
Chenghao Bi ◽  
Georges Adam ◽  
Elly Lambert ◽  
Luis Solorio ◽  
...  

A microrobot system comprising an untethered tumbling magnetic microrobot, a two-degree-of-freedom rotating permanent magnet, and an ultrasound imaging system has been developed for in vitro and in vivo biomedical applications. The microrobot tumbles end-over-end in a net forward motion due to applied magnetic torque from the rotating magnet. By turning the rotational axis of the magnet, two-dimensional directional control is possible and the microrobot was steered along various trajectories, including a circular path and P-shaped path. The microrobot is capable of moving over the unstructured terrain within a murine colon in in vitro, in situ, and in vivo conditions, as well as a porcine colon in ex vivo conditions. High-frequency ultrasound imaging allows for real-time determination of the microrobot’s position while it is optically occluded by animal tissue. When coated with a fluorescein payload, the microrobot was shown to release the majority of the payload over a 1-h time period in phosphate-buffered saline. Cytotoxicity tests demonstrated that the microrobot’s constituent materials, SU-8 and polydimethylsiloxane (PDMS), did not show a statistically significant difference in toxicity to murine fibroblasts from the negative control, even when the materials were doped with magnetic neodymium microparticles. The microrobot system’s capabilities make it promising for targeted drug delivery and other in vivo biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document