scholarly journals Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host

2018 ◽  
Vol 115 (50) ◽  
pp. E11691-E11700 ◽  
Author(s):  
Meng Mao ◽  
Xiushuai Yang ◽  
Gordon M. Bennett

Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes: Nasuia (112 kb) and Sulcia (190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host–symbiont system.

2003 ◽  
Vol 12 (3) ◽  
pp. 251-259 ◽  
Author(s):  
Koji Kadota ◽  
Shin-Ichiro Nishimura ◽  
Hidemasa Bono ◽  
Shugo Nakamura ◽  
Yoshihide Hayashizaki ◽  
...  

We applied a method based on Akaike’s information criterion (AIC) to detect genes whose expression profile is considerably different in some tissue(s) than in others. Such observations are detected as outliers, and the method we used was originally developed to detect outliers. The main advantage of the method is that objective decisions are possible because the procedure is independent of a significance level. We applied the method to 48 expression ratios corresponding to various tissues in each of 14,610 clones obtained from the RIKEN Expression Array Database (READ; http://read.gsc.riken.go.jp ). As a result, for several tissues (e.g., muscle, heart, and tongue tissues that contain similar cell types) we objectively obtained specific clones without any “thresholding.” Our study demonstrates the feasibility of the method for detecting tissue-specific gene expression patterns.


2017 ◽  
Author(s):  
Garth R. Ilsley ◽  
Ritsuko Suyama ◽  
Takeshi Noda ◽  
Nori Satoh ◽  
Nicholas M. Luscombe

AbstractSingle-cell RNA-seq has been established as a reliable and accessible technique enabling new types of analyses, such as identifying cell types and studying spatial and temporal gene expression variation and change at single-cell resolution. Recently, single-cell RNA-seq has been applied to developing embryos, which offers great potential for finding and characterising genes controlling the course of development along with their expression patterns. In this study, we applied single-cell RNA-seq to the 16-cell stage of the Ciona embryo, a marine chordate and performed a computational search for cell-specific gene expression patterns. We recovered many known expression patterns from our single-cell RNA-seq data and despite extensive previous screens, we succeeded in finding new cell-specific patterns, which we validated by in situ and single-cell qPCR.


Author(s):  
Katharina Neubauer ◽  
Barbara Zieger

Septins are conserved cytoskeletal GTP-binding proteins identified in almost all eukaryotes except higher plants. Mammalian septins comprise 13 family members with either ubiquitous or organ- and tissue-specific expression patterns. They form filamentous oligomers and complexes with other proteins to serve as diffusions barrier and/or multi-molecular scaffolds to function in a physiologically regulated manner. Diverse septins are highly expressed in endothelial cells and platelets, which play an important role in hemostasis, a process to prevent blood loss after vascular injury. Endothelial septins are involved in cellular processes such as exocytosis and in processes concerning organismal level, like angiogenesis. Septins are additionally found in endothelial cell-cell junctions where their presence is required to maintain the integrity of the barrier function of vascular endothelial monolayers. In platelets, septins are important for activation, degranulation, adhesion, and aggregation. They have been identified as mediators of distinct platelet functions and being essential in primary and secondary hemostatic processes. Septin-knockout mouse studies show the relevance of septins in several aspects of hemostasis. This is in line with reports that dysregulation of septins is clinically relevant in human bleeding disorders. The precise function of septins in the biology of endothelial cells and platelets remains poorly understood. The following mini-review highlights the current knowledge about the role of septin cytoskeleton in regulating critical functions in these two cell types.


2020 ◽  
Author(s):  
Devanshi Patel ◽  
Xiaoling Zhang ◽  
John J. Farrell ◽  
Jaeyoon Chung ◽  
Thor D. Stein ◽  
...  

ABSTRACTBecause regulation of gene expression is heritable and context-dependent, we investigated AD-related gene expression patterns in cell-types in blood and brain. Cis-expression quantitative trait locus (eQTL) mapping was performed genome-wide in blood from 5,257 Framingham Heart Study (FHS) participants and in brain donated by 475 Religious Orders Study/Memory & Aging Project (ROSMAP) participants. The association of gene expression with genotypes for all cis SNPs within 1Mb of genes was evaluated using linear regression models for unrelated subjects and linear mixed models for related subjects. Cell type-specific eQTL (ct-eQTL) models included an interaction term for expression of “proxy” genes that discriminate particular cell type. Ct-eQTL analysis identified 11,649 and 2,533 additional significant gene-SNP eQTL pairs in brain and blood, respectively, that were not detected in generic eQTL analysis. Of note, 386 unique target eGenes of significant eQTLs shared between blood and brain were enriched in apoptosis and Wnt signaling pathways. Five of these shared genes are established AD loci. The potential importance and relevance to AD of significant results in myeloid cell-types is supported by the observation that a large portion of GWS ct-eQTLs map within 1Mb of established AD loci and 58% (23/40) of the most significant eGenes in these eQTLs have previously been implicated in AD. This study identified cell-type specific expression patterns for established and potentially novel AD genes, found additional evidence for the role of myeloid cells in AD risk, and discovered potential novel blood and brain AD biomarkers that highlight the importance of cell-type specific analysis.


Author(s):  
Najma Shaheen ◽  
Jawad Akhtar ◽  
Zain Umer ◽  
Muhammad Haider Farooq Khan ◽  
Mahnoor Hussain Bakhtiari ◽  
...  

In metazoans, heritable states of cell type-specific gene expression patterns linked with specialization of various cell types constitute transcriptional cellular memory. Evolutionarily conserved Polycomb group (PcG) and trithorax group (trxG) proteins contribute to the transcriptional cellular memory by maintaining heritable patterns of repressed and active expression states, respectively. Although chromatin structure and modifications appear to play a fundamental role in maintenance of repression by PcG, the precise targeting mechanism and the specificity factors that bind PcG complexes to defined regions in chromosomes remain elusive. Here, we report a serendipitous discovery that uncovers an interplay between Polycomb (Pc) and chaperonin containing T-complex protein 1 (TCP-1) subunit 7 (CCT7) of TCP-1 ring complex (TRiC) chaperonin in Drosophila. CCT7 interacts with Pc at chromatin to maintain repressed states of homeotic and non-homeotic targets of PcG, which supports a strong genetic interaction observed between Pc and CCT7 mutants. Depletion of CCT7 results in dissociation of Pc from chromatin and redistribution of an abundant amount of Pc in cytoplasm. We propose that CCT7 is an important modulator of Pc, which helps Pc recruitment at chromatin, and compromising CCT7 can directly influence an evolutionary conserved epigenetic network that supervises the appropriate cellular identities during development and homeostasis of an organism.


2000 ◽  
Vol 28 (6) ◽  
pp. 567-574 ◽  
Author(s):  
J. Ohlrogge ◽  
M. Pollard ◽  
X. Bao ◽  
M. Focke ◽  
T. Girke ◽  
...  

For over 25 years there has been uncertainty over the pathway from CO2, to acetyl-CoA in chloroplasts. On the one hand, free acetate is the most effective substrate for fatty acid synthesis by isolated chloroplasts, and free acetate concentrations reported in leaf tissue (0.1–1 mM) appear adequate to saturate fatty acid synthase. On the other hand, a clear mechanism to generate sufficient free acetate for fatty acid synthesis is not established and direct production of acetyl-CoA from pyruvate by a plastid pyruvate dehydrogenase seems a more simple and direct path. We have re-examined this question and attempted to distinguish between the alternatives. The kinetics of 13CO2 and 14CO2 movement into fatty acids and the absolute rate of fatty acid synthesis in leaves was determined in light and dark. Because administered 14C appears in fatty acids within < 2–3 min our results are inconsistent with a large pool of free acetate as an intermediate in leaf fatty acid synthesis. In addition, these studies provide an estimate of the turnover rate of fatty acid in leaves. Studies similar to the above are more complex in seeds, and some questions about the regulation of plant lipid metabolism seem difficult to solve using conventional biochemical or molecular approaches. For example, we have little understanding of why or how some seeds produce >50%, oil whereas other seeds store largely carbohydrate or protein. Major control over complex plant biochemical pathways may only become possible by understanding regulatory networks which provide ‘global’ control over these pathways. To begin to discover such networks and provide a broad analysis of gene expression in developing oilseeds, we have produced micro-arrays that display approx. 5000 seed-expressed Arabidopsis genes. Sensitivity of the arrays was 1–2 copies of mRNA/cell. The arrays have been hybridized with probes derived from seeds, leaves and roots, and analysis of expression ratios between the different tissues has allowed the tissue-specific expression patterns of many hundreds of genes to be described for the first time. Approx. 10% of the genes were expressed at ratios ≥ 10-fold higher in seeds than in leaves or roots. Included in this list are a large number of proteins of unknown function, and potential regulatory factors such as protein kinases, phosphatases and transcription factors. The arrays were also found to be useful for analysis of Brassica seeds.


Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 495 ◽  
Author(s):  
Rosani ◽  
Domeneghetti ◽  
Maso ◽  
Wegner ◽  
Venier

Melanin plays a pivotal role in the cellular processes of several metazoans. The final step of the enzymically-regulated melanin biogenesis is the conversion of dopachrome into dihydroxyindoles, a reaction catalyzed by a class of enzymes called dopachrome tautomerases. We traced dopachrome tautomerase (DCT) and dopachrome converting enzyme (DCE) genes throughout metazoans and we could show that only one class is present in most of the phyla. While DCTs are typically found in deuterostomes, DCEs are present in several protostome phyla, including arthropods and mollusks. The respective DCEs belong to the yellow gene family, previously reported to be taxonomically restricted to insects, bacteria and fungi. Mining genomic and transcriptomic data of metazoans, we updated the distribution of DCE/yellow genes, demonstrating their presence and active expression in most of the lophotrochozoan phyla as well as in copepods (Crustacea). We have traced one intronless DCE/yellow gene through most of the analyzed lophotrochozoan genomes and we could show that it was subjected to genomic diversification in some species, while it is conserved in other species. DCE/yellow was expressed in most phyla, although it showed tissue specific expression patterns. In the parasitic copepod Mytilicola intestinalis DCE/yellow even belonged to the 100 most expressed genes. Both tissue specificity and high expression suggests that diverse functions of this gene family also evolved in other phyla apart from insects.


2001 ◽  
Vol 281 (3) ◽  
pp. H1057-H1065 ◽  
Author(s):  
A. Cheong ◽  
A. M. Dedman ◽  
S. Z. Xu ◽  
D. J. Beech

The primary objectives of this study were to reveal cell-specific expression patterns and functions of voltage-gated K+ channel (KVα1) subunits in precapillary arterioles of the murine cerebral circulation. KVα1 were detected using peptide-specific antibodies in immunofluorescence and Western blotting assays. KV1.2 was localized almost exclusively to endothelial cells, whereas KV1.5 was discretely localized to the nerves and nerve terminals that innervate the arterioles. KV1.5 also localized specifically to arteriolar nerves in human pial membrane. KV1.5 was notable for its absence from smooth muscle cells. KV1.3, KV1.4, and KV1.6 were localized to endothelial and smooth muscle cells, although KV1.4 had a low expression level. KV1.1 was not expressed. Therefore, we show that different cell types of pial arterioles have distinct physiological expression profiles of KVα1, conferring the possibility of differential modulation by extracellular and second messengers. Furthermore, we show recombinant agitoxin-2 and margatoxin are potent vasoconstrictors, suggesting that KVα1 subunits have a major function in determining arteriolar resistance to blood flow.


2020 ◽  
Vol 10 (11) ◽  
pp. 4147-4158
Author(s):  
Lesley N. Weaver ◽  
Tianlu Ma ◽  
Daniela Drummond-Barbosa

Precise genetic manipulation of specific cell types or tissues to pinpoint gene function requirement is a critical step in studies aimed at unraveling the intricacies of organismal physiology. Drosophila researchers heavily rely on the UAS/Gal4/Gal80 system for tissue-specific manipulations; however, it is often unclear whether the reported Gal4 expression patterns are indeed specific to the tissue of interest such that experimental results are not confounded by secondary sites of Gal4 expression. Here, we surveyed the expression patterns of commonly used Gal4 drivers in adult Drosophila female tissues under optimal conditions and found that multiple drivers have unreported secondary sites of expression beyond their published cell type/tissue expression pattern. These results underscore the importance of thoroughly characterizing Gal4 tools as part of a rigorous experimental design that avoids potential misinterpretation of results as we strive for understanding how the function of a specific gene/pathway in one tissue contributes to whole-body physiology.


2003 ◽  
Vol 4 (2) ◽  
pp. 208-215 ◽  
Author(s):  
David W. Galbraith

The tissues and organs of multicellular eukaryotes are frequently observed to comprise complex three-dimensional interspersions of different cell types. It is a reasonable assumption that different global patterns of gene expression are found within these different cell types. This review outlines general experimental strategies designed to characterize these global gene expression patterns, based on a combination of methods of transgenic fluorescent protein (FP) expression and targeting, of flow cytometry and sorting and of high-throughput gene expression analysis.


Sign in / Sign up

Export Citation Format

Share Document