scholarly journals Family of neural wiring receptors in bilaterians defined by phylogenetic, biochemical, and structural evidence

2019 ◽  
Vol 116 (20) ◽  
pp. 9837-9842 ◽  
Author(s):  
Shouqiang Cheng ◽  
Yeonwoo Park ◽  
Justyna D. Kurleto ◽  
Mili Jeon ◽  
Kai Zinn ◽  
...  

The evolution of complex nervous systems was accompanied by the expansion of numerous protein families, including cell-adhesion molecules, surface receptors, and their ligands. These proteins mediate axonal guidance, synapse targeting, and other neuronal wiring-related functions. Recently, 32 interacting cell surface proteins belonging to two newly defined families of the Ig superfamily (IgSF) in fruit flies were discovered to label different subsets of neurons in the brain and ventral nerve cord. They have been shown to be involved in synaptic targeting and morphogenesis, retrograde signaling, and neuronal survival. Here, we show that these proteins, Dprs and DIPs, are members of a widely distributed family of two- and three-Ig domain molecules with neuronal wiring functions, which we refer to as Wirins. Beginning from a single ancestral Wirin gene in the last common ancestor of Bilateria, numerous gene duplications produced the heterophilic Dprs and DIPs in protostomes, along with two other subfamilies that diversified independently across protostome phyla. In deuterostomes, the ancestral Wirin evolved into the IgLON subfamily of neuronal receptors. We show that IgLONs interact with each other and that their complexes can be broken by mutations designed using homology models based on Dpr and DIP structures. The nematode orthologs ZIG-8 and RIG-5 also form heterophilic and homophilic complexes, and crystal structures reveal numerous apparently ancestral features shared with Dpr-DIP complexes. The evolutionary, biochemical, and structural relationships we demonstrate here provide insights into neural development and the rise of the metazoan nervous system.

2018 ◽  
Author(s):  
Shouqiang Cheng ◽  
Yeonwoo Park ◽  
Justyna D. Kurleto ◽  
Mili Jeon ◽  
Kai Zinn ◽  
...  

ABSTRACTThe evolution of complex nervous systems was accompanied by the expansion of groups of protein families, most notably cell adhesion molecules, surface receptors and their ligands. These proteins mediate axonal guidance, synapse targeting, and other neuronal wiring-related functions. Recently, members of a set of thirty interacting cell surface proteins belonging to two newly defined families of the immunoglobulin superfamily (IgSF) in fruit flies were discovered to label different subsets of neurons in the brain and ventral nerve cord. They have been shown to be involved in synaptic targeting and morphogenesis, retrograde signaling, and neuronal survival. Here we show that these proteins, denoted as Dprs and DIPs, belong to a family of two and three-Ig domain molecules in bilaterians generally known for neuronal wiring functions. In protostomes, the ancestral Dpr/DIP gene has duplicated to form heterophilic partners, such as Dprs and DIPs, while in deuterostomes, they have evolved to create the IgLON family of neuronal receptors. In support of this phylogeny, we show that IgLONs interact with each other, and that their complexes can be broken by mutations designed using homology models based on Dpr and DIP structures. Similarly, the nematode orthologs ZIG-8 and RIG-5 can form heterophilic and homophilic complexes structurally matching Dpr-DIP and DIP-DIP complexes. The evolutionary, biochemical and structural relationships we demonstrate here provides insights into neural development and the rise of complexity in metazoans.Significance StatementCell surface receptors assign and display unique identities to neurons, and direct proper and robust wiring of neurons to create functional neural circuits. Recent work has identified two new classes of receptors in fruit flies, called the Dpr and DIP families with 30 members, which interact in 38 pairwise combinations. These proteins are implicated in neural identity, wiring and survival in many parts of the fly nervous system. Here, using evolutionary, biochemical and structural evidence, we show that Dprs and DIPs are members of an ancient bilaterian family of receptors. Members of this family share functional roles relevant to wiring across species, and are likely crucial in the emergence of the bilaterian nervous systems common to vertebrate and invertebrate animals.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ludwik Gąsiorowski ◽  
Aina Børve ◽  
Irina A. Cherneva ◽  
Andrea Orús-Alcalde ◽  
Andreas Hejnol

Abstract Background The brain anatomy in the clade Spiralia can vary from simple, commissural brains (e.g., gastrotrichs, rotifers) to rather complex, partitioned structures (e.g., in cephalopods and annelids). How often and in which lineages complex brains evolved still remains unclear. Nemerteans are a clade of worm-like spiralians, which possess a complex central nervous system (CNS) with a prominent brain, and elaborated chemosensory and neuroglandular cerebral organs, which have been previously suggested as homologs to the annelid mushroom bodies. To understand the developmental and evolutionary origins of the complex brain in nemerteans and spiralians in general, we investigated details of the neuroanatomy and gene expression in the brain and cerebral organs of the juveniles of nemertean Lineus ruber. Results In the juveniles, the CNS is already composed of all major elements present in the adults, including the brain, paired longitudinal lateral nerve cords, and an unpaired dorsal nerve cord, which suggests that further neural development is mostly related with increase in the size but not in complexity. The ultrastructure of the juvenile cerebral organ revealed that it is composed of several distinct cell types present also in the adults. The 12 transcription factors commonly used as brain cell type markers in bilaterians show region-specific expression in the nemertean brain and divide the entire organ into several molecularly distinct areas, partially overlapping with the morphological compartments. Additionally, several of the mushroom body-specific genes are expressed in the developing cerebral organs. Conclusions The dissimilar expression of molecular brain markers between L. ruber and the annelid Platynereis dumerilii indicates that the complex brains present in those two species evolved convergently by independent expansions of non-homologous regions of a simpler brain present in their last common ancestor. Although the same genes are expressed in mushroom bodies and cerebral organs, their spatial expression within organs shows apparent differences between annelids and nemerteans, indicating convergent recruitment of the same genes into patterning of non-homologous organs or hint toward a more complicated evolutionary process, in which conserved and novel cell types contribute to the non-homologous structures.


2021 ◽  
Author(s):  
Jan Adrianus Veenstra

Background: Insulin is evolutionarily related to the insulin-like growth factors (IGFs) and like the latter stimulates a receptor tyrosine kinase (RTK) that transfers the extracellular hormonal signal into an intracellular response. Other hormones related to insulin, such as relaxin, do not use an RTK, but a G-protein coupled receptor (GPCR). This is unusual since evolutionarily related hormones typically either use the same or paralogous receptors. In arthropods three different IGF-related peptides likely evolved from a gene triplication, as in several species genes coding these three peptides are located next to one another on the same chromosomal fragment. Of these three hormones one, an IGF-like hormone, acts through an RTK, while the other two use a GPCR. This suggests that the ancestral IGF-like peptide may have used both types of receptors. These arthropod insulin-like peptides have homologs in vertebrates, which suggests that the initial gene triplication was perhaps already present in the last common ancestor of deuterostomes and protostomes. It would be interesting to know whether this is indeed so and to establish how insulin and other insulin-like peptides might be related to this trio of IGF-related hormones. Methodology: Genes coding insulin and related peptides as well as their putative receptors were identified in genomes and transcriptomes from echinoderms and hemichordates. Results: A similar triplet of genes coding insulin-like peptides is also found in some hemichordates and echinoderms. Two of the three ambulacrarian peptides are orthologs of arthropod IGF and Drosophila insulin-like peptide 7 (dilp7), while the third one looks like an ortholog of the arthropod peptide gonadulin. In echinoderms two novel insulin-like peptides emerged, gonad stimulating substance (GSS) and multinsulin, likely from gene duplications of the IGF and dilp7-like genes respectively. However, no novel receptors for insulin-like peptides evolved. If IGF were to act through both a GPCR and an RTK it would suggest that GSS acts on only one of the two receptors, possibly the RTK. The evolution of GSS from IGF may represent a pattern, where IGF gene duplications lead to novel genes coding shorter peptides that have lost their ability to activate a GPCR. It is likely this is how insulin and the insect neuroendocrine insulin-like peptides evolved independently from IGF. Conclusion: The local gene triplication previously described from arthropods that yielded three genes coding IGF-related peptides was already present in the last common ancestor of protostomes and deuterostomes. It seems plausible that insulin and other insulin-like peptides, such as those produced by neuroendocrine cells in the brain of insects and echinoderm GSS evolved independently from IGF and thus are not true orthologs, but the result of convergent evolution.


2006 ◽  
Vol 34 (5) ◽  
pp. 863-867 ◽  
Author(s):  
S. Mizielinska ◽  
S. Greenwood ◽  
C.N. Connolly

Maintaining the correct balance in neuronal activation is of paramount importance to normal brain function. Imbalances due to changes in excitation or inhibition can lead to a variety of disorders ranging from the clinically extreme (e.g. epilepsy) to the more subtle (e.g. anxiety). In the brain, the most common inhibitory synapses are regulated by GABAA (γ-aminobutyric acid type A) receptors, a role commensurate with their importance as therapeutic targets. Remarkably, we still know relatively little about GABAA receptor biogenesis. Receptors are constructed as pentameric ion channels, with α and β subunits being the minimal requirement, and the incorporation of a γ subunit being necessary for benzodiazepine modulation and synaptic targeting. Insights have been provided by the discovery of several specific assembly signals within different GABAA receptor subunits. Moreover, a number of recent studies on GABAA receptor mutations associated with epilepsy have further enhanced our understanding of GABAA receptor biogenesis, structure and function.


Development ◽  
2002 ◽  
Vol 129 (9) ◽  
pp. 2121-2128
Author(s):  
Damon T. Page

In vertebrates (deuterostomes), brain patterning depends on signals from adjacent tissues. For example, holoprosencephaly, the most common brain anomaly in humans, results from defects in signaling between the embryonic prechordal plate (consisting of the dorsal foregut endoderm and mesoderm) and the brain. I have examined whether a similar mechanism of brain development occurs in the protostome Drosophila, and find that the foregut and mesoderm act to pattern the fly embryonic brain. When the foregut and mesoderm of Drosophila are ablated, brain patterning is disrupted. The loss of Hedgehog expressed in the foregut appears to mediate this effect, as it does in vertebrates. One mechanism whereby these defects occur is a disruption of normal apoptosis in the brain. These data argue that the last common ancestor of protostomes and deuterostomes had a prototype of the brains present in modern animals, and also suggest that the foregut and mesoderm contributed to the patterning of this ‘proto-brain’. They also argue that the foreguts of protostomes and deuterostomes, which have traditionally been assigned to different germ layers, are actually homologous.


2018 ◽  
Vol 27 (12) ◽  
pp. 1763-1777 ◽  
Author(s):  
Sheng-Wen Wang ◽  
Zhong Liu ◽  
Zhong-Song Shi

Non-coding RNAs (ncRNAs) are a class of functional RNAs that regulate gene expression in a post-transcriptional manner. NcRNAs include microRNAs, long non-coding RNAs and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes, including cerebral ischemic injury, neurodegeneration, neural development, and plasticity. Stroke is one of the leading causes of death and physical disability worldwide. Acute ischemic stroke (AIS) occurs when brain blood flow stops, and that stoppage results in reduced oxygen and glucose supply to cells in the brain. In this article, we review the latest progress on ncRNAs in relation to their implications in AIS, as well as their potential as diagnostic and prognostic biomarkers. We also review ncRNAs acting as possible therapeutic targets in future precision medicine. Finally, we conclude with a brief discussion of current challenges and future directions for ncRNAs studies in AIS, which may facilitate the translation of ncRNAs research into clinical practice to improve clinical outcome of AIS.


2000 ◽  
Vol 11 (8) ◽  
pp. 2643-2655 ◽  
Author(s):  
Lolita Zaliauskiene ◽  
Sunghyun Kang ◽  
Christie G. Brouillette ◽  
Jacob Lebowitz ◽  
Ramin B. Arani ◽  
...  

How recycling receptors are segregated from down-regulated receptors in the endosome is unknown. In previous studies, we demonstrated that substitutions in the transferrin receptor (TR) transmembrane domain (TM) convert the protein from an efficiently recycling receptor to one that is rapidly down regulated. In this study, we demonstrate that the “signal” within the TM necessary and sufficient for down-regulation is Thr11Gln17Thr19 (numbering in TM). Transplantation of these polar residues into the wild-type TR promotes receptor down-regulation that can be demonstrated by changes in protein half-life and in receptor recycling. Surprisingly, this modification dramatically increases the TR internalization rate as well (∼79% increase). Sucrose gradient centrifugation and cross-linking studies reveal that propensity of the receptors to self-associate correlates with down-regulation. Interestingly, a number of cell surface proteins that contain TM polar residues are known to be efficiently down-regulated, whereas recycling receptors for low-density lipoprotein and transferrin conspicuously lack these residues. Our data, therefore, suggest a simple model in which specific residues within the TM sequences dramatically influence the fate of membrane proteins after endocytosis, providing an alternative signal for down-regulation of receptor complexes to the well-characterized cytoplasmic tail targeting signals.


2022 ◽  
Author(s):  
Zhen-Ge Luo ◽  
Xin-Yao Sun ◽  
Xiang-Chun Ju ◽  
Yang Li ◽  
Peng-Ming Zeng ◽  
...  

The recently developed brain organoids have been used to recapitulate the processes of brain development and related diseases. However, the lack of vasculatures, which regulate neurogenesis, brain disorders, and aging process, limits the utility of brain organoids. In this study, we induced vessel and brain organoids respectively, and then fused two types of organoids together to obtain vascularized brain organoids. The fused brain organoids were engrafted with robust vascular network-like structures, and exhibited increased number of neural progenitors, in line with the possibility that vessels regulate neural development. Fusion organoids also contained functional blood-brain-barrier (BBB)-like structures, as well as microglial cells, a specific population of immune cells in the brain. The incorporated microglia responded actively to immune stimuli to the fused brain organoids. Thus, the fusion organoids established in this study allow modeling interactions between the neuronal and non-neuronal components in vitro, in particular the vasculature and microglia niche.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Shouqiang Cheng ◽  
James Ashley ◽  
Justyna D Kurleto ◽  
Meike Lobb-Rabe ◽  
Yeonhee Jenny Park ◽  
...  

In stereotyped neuronal networks, synaptic connectivity is dictated by cell surface proteins, which assign unique identities to neurons, and physically mediate axon guidance and synapse targeting. We recently identified two groups of immunoglobulin superfamily proteins in Drosophila, Dprs and DIPs, as strong candidates for synapse targeting functions. Here, we uncover the molecular basis of specificity in Dpr–DIP mediated cellular adhesions and neuronal connectivity. First, we present five crystal structures of Dpr–DIP and DIP–DIP complexes, highlighting the evolutionary and structural origins of diversification in Dpr and DIP proteins and their interactions. We further show that structures can be used to rationally engineer receptors with novel specificities or modified affinities, which can be used to study specific circuits that require Dpr–DIP interactions to help establish connectivity. We investigate one pair, engineered Dpr10 and DIP-α, for function in the neuromuscular circuit in flies, and reveal roles for homophilic and heterophilic binding in wiring.


2018 ◽  
Vol 115 (35) ◽  
pp. E8236-E8245
Author(s):  
Shih-Yu Chen ◽  
Chun-Ta Ho ◽  
Wei-Wen Liu ◽  
Mark Lucanic ◽  
Hsiu-Ming Shih ◽  
...  

During neural development, growing axons express specific surface receptors in response to various environmental guidance cues. These axon guidance receptors are regulated through intracellular trafficking and degradation to enable navigating axons to reach their targets. In Caenorhabditis elegans, the UNC-5 receptor is necessary for dorsal migration of developing motor axons. We previously found that MAX-1 is required for UNC-5–mediated axon repulsion, but its mechanism of action remained unclear. Here, we demonstrate that UNC-5–mediated axon repulsion in C. elegans motor axons requires both max-1 SUMOylation and the AP-3 complex β subunit gene, apb-3. Genetic interaction studies show that max-1 is SUMOylated by gei-17/PIAS1 and acts upstream of apb-3. Biochemical analysis suggests that constitutive interaction of MAX-1 and UNC-5 receptor is weakened by MAX-1 SUMOylation and by the presence of APB-3, a competitive interactor with UNC-5. Overexpression of APB-3 reroutes the trafficking of UNC-5 receptor into the lysosome for protein degradation. In vivo fluorescence recovery after photobleaching experiments shows that MAX-1 SUMOylation and APB-3 are required for proper trafficking of UNC-5 receptor in the axon. Our results demonstrate that SUMOylation of MAX-1 plays an important role in regulating AP-3–mediated trafficking and degradation of UNC-5 receptors during axon guidance.


Sign in / Sign up

Export Citation Format

Share Document