scholarly journals Global-scale brittle plastic rheology at the cometesimals merging of comet 67P/Churyumov–Gerasimenko

2020 ◽  
Vol 117 (19) ◽  
pp. 10181-10187
Author(s):  
Marco Franceschi ◽  
Luca Penasa ◽  
Matteo Massironi ◽  
Giampiero Naletto ◽  
Sabrina Ferrari ◽  
...  

Observations of comet nuclei indicate that the main constituent is a mix of ice and refractory materials characterized by high porosity (70–75%) and low bulk strength (10−4–10−6 MPa); however, the nature and physical properties of these materials remain largely unknown. By combining surface inspection of comet 67P/Churyumov–Gerasimenko and three-dimensional (3D) modeling of the independent concentric sets of layers that make up the structure of its two lobes, we provide clues about the large-scale rheological behavior of the nucleus and the kinematics of the impact that originated it. Large folds in the layered structure indicate that the merging of the two cometesimals involved reciprocal motion with dextral strike–slip kinematics that bent the layers in the contact area without obliterating them. Widespread long cracks and the evidence of relevant mass loss in absence of large density variations within the comet’s body testify that large-scale deformation occurred in a brittle-plastic regime and was accommodated through folding and fracturing. Comparison of refined 3D geologic models of the lobes with triaxial ellipsoids that suitably represent the overall layers arrangement reveals characteristics that are consistent with an impact between two roughly ellipsoidal cometesimals that produced large-scale axial compression and transversal elongation. The observed features imply global transfer of impact-related shortening into transversal strain. These elements delineate a model for the global rheology of cometesimals that could be possible evoking a prominent bonding action of ice and, to a minor extent, organics.

2020 ◽  
Vol 49 (D1) ◽  
pp. D38-D46
Author(s):  
Kyukwang Kim ◽  
Insu Jang ◽  
Mooyoung Kim ◽  
Jinhyuk Choi ◽  
Min-Seo Kim ◽  
...  

Abstract Three-dimensional (3D) genome organization is tightly coupled with gene regulation in various biological processes and diseases. In cancer, various types of large-scale genomic rearrangements can disrupt the 3D genome, leading to oncogenic gene expression. However, unraveling the pathogenicity of the 3D cancer genome remains a challenge since closer examinations have been greatly limited due to the lack of appropriate tools specialized for disorganized higher-order chromatin structure. Here, we updated a 3D-genome Interaction Viewer and database named 3DIV by uniformly processing ∼230 billion raw Hi-C reads to expand our contents to the 3D cancer genome. The updates of 3DIV are listed as follows: (i) the collection of 401 samples including 220 cancer cell line/tumor Hi-C data, 153 normal cell line/tissue Hi-C data, and 28 promoter capture Hi-C data, (ii) the live interactive manipulation of the 3D cancer genome to simulate the impact of structural variations and (iii) the reconstruction of Hi-C contact maps by user-defined chromosome order to investigate the 3D genome of the complex genomic rearrangement. In summary, the updated 3DIV will be the most comprehensive resource to explore the gene regulatory effects of both the normal and cancer 3D genome. ‘3DIV’ is freely available at http://3div.kr.


Author(s):  
Martin Fleischmann ◽  
Ombretta Romice ◽  
Sergio Porta

Unprecedented urbanisation processes characterise the Great Acceleration, urging urban researchers to make sense of data analysis in support of evidence-based and large-scale decision-making. Urban morphologists are no exception since the impact of urban form on fundamental natural and social patterns (equity, prosperity and resource consumption’s efficiency) is now fully acknowledged. However, urban morphology is still far from offering a comprehensive and reliable framework for quantitative analysis. Despite remarkable progress since its emergence in the late 1950s, the discipline still exhibits significant terminological inconsistencies with regards to the definition of the fundamental components of urban form, which prevents the establishment of objective models for measuring it. In this article, we present a study of existing methods for measuring urban form, with a focus on terminological inconsistencies, and propose a systematic and comprehensive framework to classify urban form characters, where ‘urban form character’ stands for a characteristic (or feature) of one kind of urban form that distinguishes it from another kind. In particular, we introduce the Index of Elements that allows for a univocal and non-interpretive description of urban form characters. Based on such Index of Elements, we develop a systematic classification of urban form according to six categories (dimension, shape, spatial distribution, intensity, connectivity and diversity) and three conceptual scales (small, medium, large) based on two definitions of scale (extent and grain). This framework is then applied to identify and organise the urban form characters adopted in available literature to date. The resulting classification of urban form characters reveals clear gaps in existing research, in particular, in relation to the spatial distribution and diversity characters. The proposed framework reduces the current inconsistencies of urban morphology research, paving the way to enhanced methods of urban form systematic and quantitative analysis at a global scale.


2019 ◽  
Vol 9 (6) ◽  
pp. 1049 ◽  
Author(s):  
Saveria Santangelo

Electrospinning is a simple, versatile, cost-effective, and scalable technique for the growth of highly porous nanofibers. These nanostructures, featured by high aspect ratio, may exhibit a large variety of different sizes, morphologies, composition, and physicochemical properties. By proper post-spinning heat treatment(s), self-standing fibrous mats can also be produced. Large surface area and high porosity make electrospun nanomaterials (both fibers and three-dimensional fiber networks) particularly suitable to numerous energy-related applications. Relevant results and recent advances achieved by their use in rechargeable lithium- and sodium-ion batteries, redox flow batteries, metal-air batteries, supercapacitors, reactors for water desalination via capacitive deionization and for hydrogen production by water splitting, as well as nanogenerators for energy harvesting, and textiles for energy saving will be presented and the future prospects for the large-scale application of electrospun nanomaterials will be discussed.


2010 ◽  
Vol 14 (18) ◽  
pp. 1-25 ◽  
Author(s):  
Sandra I. Saad ◽  
Humberto R. da Rocha ◽  
Maria A. F. Silva Dias ◽  
Rafael Rosolem

Abstract The authors simulated the effects of Amazonian mesoscale deforestation in the boundary layer and in rainfall with the Brazilian Regional Atmospheric Modeling System (BRAMS) model. They found that both the area and shape (with respect to wind incidence) of deforestation and the soil moisture status contributed to the state of the atmosphere during the time scale of several weeks, with distinguishable patterns of temperature, humidity, and rainfall. Deforestation resulted in the development of a three-dimensional thermal cell, the so-called deforestation breeze, slightly shifted downwind to large-scale circulation. The boundary layer was warmer and drier above 1000-m height and was slightly wetter up to 2000-m height. Soil wetness affected the circulation energetics proportionally to the soil dryness (for soil wetness below ∼0.6). The shape of the deforestation controlled the impact on rainfall. The horizontal strips lined up with the prevailing wind showed a dominant increase in rainfall, significant up to about 60 000 km2. On the other hand, in the patches aligned in the opposite direction (north–south), there was both increase and decrease in precipitation in two distinct regions, as a result of clearly separated upward and downward branches, which caused the precipitation to increase for patches up to 15 000 km2. The authors’ estimates for the size of deforestation impacting the rainfall contributed to fill up the low spatial resolution in other previous studies.


2014 ◽  
Vol 142 (11) ◽  
pp. 4187-4206 ◽  
Author(s):  
Shu-Ya Chen ◽  
Tae-Kwon Wee ◽  
Ying-Hwa Kuo ◽  
David H. Bromwich

Abstract The impact of global positioning system (GPS) radio occultation (RO) data on an intense synoptic-scale storm that occurred over the Southern Ocean in December 2007 is evaluated, and a synoptic explanation of the assessed impact is offered. The impact is assessed by using the three-dimensional variational data assimilation scheme (3DVAR) of the Weather Research and Forecasting (WRF) Model Data Assimilation system (WRFDA), and by comparing two experiments: one with and the other without assimilating the refractivity data from four different RO missions. Verifications indicate significant positive impacts of the RO data in various measures and parameters as well as in the track and intensity of the Antarctic cyclone. The analysis of the atmospheric processes underlying the impact shows that the assimilation of the RO data yields substantial improvements in the large-scale circulations that in turn control the development of the Antarctic storm. For instance, the RO data enhanced the strength of a 500-hPa trough over the Southern Ocean and prevented the katabatic flow near the coast of East Antarctica from an overintensification. This greatly influenced two low pressure systems of a comparable intensity, which later merged together and evolved into the major storm. The dominance of one low over the other in the merger dramatically changed the track, intensity, and structure of the merged storm. The assimilation of GPS RO data swapped the dominant low, leading to a remarkable improvement in the subsequent storm’s prediction.


2009 ◽  
Vol 9 (3) ◽  
pp. 13889-13916 ◽  
Author(s):  
A. Voulgarakis ◽  
O. Wild ◽  
N. H. Savage ◽  
G. D. Carver ◽  
J. A. Pyle

Abstract. We use a three-dimensional chemical transport model to examine the shortwave radiative effects of clouds on the tropospheric ozone budget. In addition to looking at changes in global concentrations as previous studies have done, we examine changes in ozone chemical production and loss caused by clouds and how these vary in different parts of the troposphere. On a global scale, we find that clouds have a modest effect on ozone chemistry, but on a regional scale their role is much more significant, with the size of the response dependent on the region. The largest averaged changes in chemical budgets (±10–14%) are found in the marine troposphere, where cloud optical depths are high. We demonstrate that cloud effects are small on average in the middle troposphere because this is a transition region between reduction and enhancement in photolysis rates. We show that increases in boundary layer ozone due to clouds are driven by large-scale changes in downward ozone transport from higher in the troposphere rather than by decreases in in-situ ozone chemical loss rates. Increases in upper tropospheric ozone are caused by higher production rates due to backscattering of radiation and consequent increases in photolysis rates, mainly J(NO2). The global radiative effect of clouds on isoprene is stronger than on ozone. Tropospheric isoprene lifetime increases by 7% when taking clouds into account. We compare the importance of clouds in contributing to uncertainties in the global ozone budget with the role of other radiatively-important factors. The budget is most sensitive to the overhead ozone column, while surface albedo and clouds have smaller effects. However, uncertainty in representing the spatial distribution of clouds may lead to a large sensitivity on regional scales.


2020 ◽  
Vol 640 ◽  
pp. L10 ◽  
Author(s):  
C. R. Goddard ◽  
A. C. Birch ◽  
D. Fournier ◽  
L. Gizon

Context. Large-scale equatorial Rossby modes have been observed on the Sun over the last two solar cycles. Aims. We investigate the impact of the time-varying zonal flows on the frequencies of Rossby modes. Methods. A first-order perturbation theory approach is used to obtain an expression for the expected shift in the mode frequencies due to perturbations in the internal rotation rate. Results. Using the time-varying rotation from helioseismic inversions we predict the changes in Rossby mode frequencies with azimuthal orders from m = 1 to m = 15 over the last two solar cycles. The peak-to-peak frequency change is less than 1 nHz for the m = 1 mode, grows with m, and reaches 25 nHz for m = 15. Conclusions. Given the observational uncertainties on mode frequencies due to the finite mode lifetimes, we find that the predicted frequency shifts are near the limit of detectability.


2021 ◽  
Author(s):  
Marina A Pak ◽  
Karina A Markhieva ◽  
Mariia S Novikova ◽  
Dmitry S Petrov ◽  
Ilya S Vorobyev ◽  
...  

AlphaFold changed the field of structural biology by achieving three-dimensional (3D) structure prediction from protein sequence at experimental quality. The astounding success even led to claims that the protein folding problem is "solved". However, protein folding problem is more than just structure prediction from sequence. Presently, it is unknown if the AlphaFold-triggered revolution could help to solve other problems related to protein folding. Here we assay the ability of AlphaFold to predict the impact of single mutations on protein stability (ΔΔG) and function. To study the question we extracted metrics from AlphaFold predictions before and after single mutation in a protein and correlated the predicted change with the experimentally known ΔΔG values. Additionally, we correlated the AlphaFold predictions on the impact of a single mutation on structure with a large scale dataset of single mutations in GFP with the experimentally assayed levels of fluorescence. We found a very weak or no correlation between AlphaFold output metrics and change of protein stability or fluorescence. Our results imply that AlphaFold cannot be immediately applied to other problems or applications in protein folding.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Yuejin Zhu ◽  
Lei Yu ◽  
Gang Dong ◽  
Jianfeng Pan ◽  
Zhenhua Pan

The flow topologies of compressible large-scale distorted flames are studied by means of the analysis of the invariants of the velocity gradient tensor (VGT). The results indicate that compressibility plays a minor role in the distorted flame zone. And the joint probability density function (p.d.f.) of the Q-R diagram appears as a teardrop shape, which is a universal feature of turbulence. Therefore, the distorted flame exhibits the characteristic of large-scale turbulence combustion, especially behind the reflected shock wave, while the p.d.f. of the QS⁎-QW diagram implies that the dissipation is enhanced in the compression and expansion regions, where it is higher than that when P=0. Furthermore, we identify that the flame evolution is dominated by rotation by means of a quantitative statistical study, and the SFS topology is the predominant flow pattern. Not surprisingly, negative dilatation could suppress the unstable topologies, whereas positive dilatation could suppress the stable topologies.


2016 ◽  
Vol 16 (20) ◽  
pp. 13185-13212 ◽  
Author(s):  
Owen B. Toon ◽  
Charles Bardeen ◽  
Rolando Garcia

Abstract. About 66 million years ago, an asteroid about 10 km in diameter struck the Yucatan Peninsula creating the Chicxulub crater. The crater has been dated and found to be coincident with the Cretaceous–Paleogene (K-Pg) mass extinction event, one of six great mass extinctions in the last 600 million years. This event precipitated one of the largest episodes of rapid climate change in Earth's history, yet no modern three-dimensional climate calculations have simulated the event. Similarly, while there is an ongoing effort to detect asteroids that might hit Earth and to develop methods to stop them, there have been no modern calculations of the sizes of asteroids whose impacts on land would cause devastating effects on Earth. Here, we provide the information needed to initialize such calculations for the K-Pg impactor and for a 1 km diameter impactor. There is considerable controversy about the details of the events that followed the Chicxulub impact. We proceed through the data record in the order of confidence that a climatically important material was present in the atmosphere. The climatic importance is roughly proportional to the optical depth of the material. Spherules with diameters of several hundred microns are found globally in an abundance that would have produced an atmospheric layer with an optical depth around 20, yet their large sizes would only allow them to stay airborne for a few days. They were likely important for triggering global wildfires. Soot, probably from global or near-global wildfires, is found globally in an abundance that would have produced an optical depth near 100, which would effectively prevent sunlight from reaching the surface. Nanometer-sized iron particles are also present globally. Theory suggests these particles might be remnants of the vaporized asteroid and target that initially remained as vapor rather than condensing on the hundred-micron spherules when they entered the atmosphere. If present in the greatest abundance allowed by theory, their optical depth would have exceeded 1000. Clastics may be present globally, but only the quartz fraction can be quantified since shock features can identify it. However, it is very difficult to determine the total abundance of clastics. We reconcile previous widely disparate estimates and suggest the clastics may have had an optical depth near 100. Sulfur is predicted to originate about equally from the impactor and from the Yucatan surface materials. By mass, sulfur is less than 10 % of the observed mass of the spheres and estimated mass of nanoparticles. Since the sulfur probably reacted on the surfaces of the soot, nanoparticles, clastics, and spheres, it is likely a minor component of the climate forcing; however, detailed studies of the conversion of sulfur gases to particles are needed to determine if sulfuric acid aerosols dominated in late stages of the evolution of the atmospheric debris. Numerous gases, including CO2, SO2 (or SO3), H2O, CO2, Cl, Br, and I, were likely injected into the upper atmosphere by the impact or the immediate effects of the impact such as fires across the planet. Their abundance might have increased relative to current ambient values by a significant fraction for CO2, and by factors of 100 to 1000 for the other gases. For the 1 km impactor, nanoparticles might have had an optical depth of 1.5 if the impact occurred on land. If the impactor struck a densely forested region, soot from the forest fires might have had an optical depth of 0.1. Only S and I would be expected to be perturbed significantly relative to ambient gas-phase values. One kilometer asteroids impacting the ocean may inject seawater into the stratosphere as well as halogens that are dissolved in the seawater. For each of the materials mentioned, we provide initial abundances and injection altitudes. For particles, we suggest initial size distributions and optical constants. We also suggest new observations that could be made to narrow the uncertainties about the particles and gases generated by large impacts.


Sign in / Sign up

Export Citation Format

Share Document