scholarly journals Sources of off-target expression from recombinase-dependent AAV vectors and mitigation with cross-over insensitive ATG-out vectors

2019 ◽  
Vol 116 (52) ◽  
pp. 27001-27010 ◽  
Author(s):  
Kyle B. Fischer ◽  
Hannah K. Collins ◽  
Edward M. Callaway

In combination with transgenic mouse lines expressing Cre or Flp recombinases in defined cell types, recombinase-dependent adeno-associated viruses (AAVs) have become the tool of choice for localized cell-type-targeted gene expression. Unfortunately, applications of this technique when expressing highly sensitive transgenes are impeded by off-target, or “leak” expression, from recombinase-dependent AAVs. We investigated this phenomenon and find that leak expression is mediated by both infrequent transcription from the inverted transgene in recombinant-dependent AAV designs and recombination events during bacterial AAV plasmid production. Recombination in bacteria is mediated by homology across the antiparallel recombinase-specific recognition sites present in recombinase-dependent designs. To address both of these issues we designed an AAV vector that uses mutant “cross-over insensitive” recognition sites combined with an “ATG-out” design. We show that these CIAO (cross-over insensitive ATG-out) vectors virtually eliminate leak expression. CIAO vectors provide reliable and targeted transgene expression and are extremely useful for recombinase-dependent expression of highly sensitive transgenes.

Genetics ◽  
2020 ◽  
Vol 216 (4) ◽  
pp. 891-903
Author(s):  
Ishara S. Ariyapala ◽  
Jessica M. Holsopple ◽  
Ellen M. Popodi ◽  
Dalton G. Hartwick ◽  
Lily Kahsai ◽  
...  

The Drosophila adult midgut is a model epithelial tissue composed of a few major cell types with distinct regional identities. One of the limitations to its analysis is the lack of tools to manipulate gene expression based on these regional identities. To overcome this obstacle, we applied the intersectional split-GAL4 system to the adult midgut and report 653 driver combinations that label cells by region and cell type. We first identified 424 split-GAL4 drivers with midgut expression from ∼7300 drivers screened, and then evaluated the expression patterns of each of these 424 when paired with three reference drivers that report activity specifically in progenitor cells, enteroendocrine cells, or enterocytes. We also evaluated a subset of the drivers expressed in progenitor cells for expression in enteroblasts using another reference driver. We show that driver combinations can define novel cell populations by identifying a driver that marks a distinct subset of enteroendocrine cells expressing genes usually associated with progenitor cells. The regional cell type patterns associated with the entire set of driver combinations are documented in a freely available website, providing information for the design of thousands of additional driver combinations to experimentally manipulate small subsets of intestinal cells. In addition, we show that intestinal enhancers identified with the split-GAL4 system can confer equivalent expression patterns on other transgenic reporters. Altogether, the resource reported here will enable more precisely targeted gene expression for studying intestinal processes, epithelial cell functions, and diseases affecting self-renewing tissues.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3296-3296
Author(s):  
Raul Teruel Montoya ◽  
Xianguo Kong ◽  
Shaji Abraham ◽  
Lin Ma ◽  
Leonard C. Edelstein ◽  
...  

Abstract Abstract 3296 Genetic modification of hematopoietic stem cells (HSCs) has the potential to benefit acquired and congenital hematological disorders. Despite the use of so-called “tissue-specific” promoters to drive expression of the desired transgene, off-target (and consequent deleterious) effects have been observed. MicroRNAs (miRNAs) are important regulators of gene expression. They associate with Argonaute proteins and most typically target 3'UTRs, where complementary base-pairing results in repressed gene expression via RNA decay and translation inhibition. Most miRNAs are ubiquitously expressed, and although some are claimed to be “tissue specific,” such claims have generally not been rigorously validated. The long-term goal of this work is identifying “cell preferential” miRNA expression that could be exploited in expression vectors to minimize off-target transgene expression in HSCs. Initially, total RNA was extracted with Trizol from the megakaryocyte and T-lymphocyte cell lines, Meg-01 and Jurkat, and miRNAs were profiled by Nanostring technology (Nanostring Technologies, Denver, CO). MiR-495 was determined to be highly expressed in Meg-01 and very low in Jurkat cells. A luciferase reporter construct was generated with four canonical binding sites for miR-495 in the 3'UTR and transfected into both cell lines. Compared to control vector without miR-495 binding sites, luciferase expression showed a 50% reduction in Meg-01 cells, but no knock down in Jurkat cells. These experiments indicated that different levels of endogenous miRNA levels can regulate transgene expression through a novel design in the 3'UTR. We next turned our attention to human hematopoietic cells. We reasoned that the long-term goal of minimal off-target transgene expression in HSCs would require knowledge of miRNAs that had little or no detectable expression (“selectively reduced [SR]”) in one cell type and were highly expressed in other cell types. In this manner, the transgene expression would be dampened only in the non-target cells. As a surrogate for bone marrow progenitors and as proof of principle, we used primary cells in normal human peripheral blood. T-cells, B-cells, platelets and granulocytes were purified by density centrifugation followed by immunoselection from five healthy human donors. Flow cytometry using membrane specific markers demonstrate >97% purity of each specific cell preparation. Total RNA was extracted and miRNAs were profiled as above. First, we identified 277 miRNAs that were differentially expressed between any pair of cell types (p-value<0.05 by ANOVA). Second, we performed ranked pair-wise comparisons across all cell types to determine SR miRNAs. This analysis revealed 5 platelet SR-miRNAs, 6 B-cell SR-miRNAs, 2 T-cell SR-miRNAs and 4 granulocyte SR-miRNAs. Lastly, we considered which of these 17 SR-miRNAs would be the best single SR-miRNA within and across cell types. SR-miRNAs were normalized to let-7b, a miRNA we determined to be equivalently expressed across all cell types, and hence, an ideal normalizer. Lineage-specific SR-miRNAs were selected based on extremely low expression in only one cell type and highest fold change of expression compared to the other cell types. The best SR-miRNAs were miR-29b (SR in platelets), miR-125a-5p (SR in B-cells) and miR-146a (SR in granulocytes). The SR expression levels of these 3 miRNAs were validated by qRT-PCR. Our analysis identified no good SR-miRNAs in T-cells. On-going experiments are testing the selective effects of the SR miRNAs in lentiviral vector infection of cord blood CD34+ cells differentiated along specific lineages. In summary, we have demonstrated in hematopoietic cell lines that SR endogenous miRNAs can regulate the expression of transgenes via tandem arrangement of their target sites in the 3'UTR. Additionally, we have identified miRNAs that are specifically expressed at a very low level in one blood cell type and at high levels in other cell types. These miRNAs could potentially be utilized as new biological tools in gene therapy for hematological disorders to restrict transgene expression and avoid the negative consequences of off-target expression. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Ishara S. Ariyapala ◽  
Jessica M. Holsopple ◽  
Ellen M. Popodi ◽  
Dalton G. Hartwick ◽  
Lily Kahsai ◽  
...  

ABSTRACTThe Drosophila adult midgut is a model epithelial tissue composed of a few major cell types with distinct regional identities. One of the limitations to its analysis is the lack of tools to manipulate gene expression based on these regional identities. To overcome this obstacle, we applied the intersectional split-GAL4 system to the adult midgut and report 653 driver combinations that label cells by region and cell type. We first identified 424 split-GAL4 drivers with midgut expression from over 7,300 drivers screened, and then evaluated the expression patterns of each of these 424 when paired with three reference drivers that report activity specifically in progenitor cells, enteroendocrine cells, or enterocytes. We also evaluated a subset of the drivers expressed in progenitor cells for expression in enteroblasts using another reference driver. We show that driver combinations can define novel cell populations by identifying a driver that marks a distinct subset of enteroendocrine cells expressing genes usually associated with progenitor cells. The regional cell type patterns associated with the entire set of driver combinations are documented in a freely available website, providing information for the design of thousands of additional driver combinations to experimentally manipulate small subsets of intestinal cells. In addition, we show that intestinal enhancers identified with the split-GAL4 system can confer equivalent expression patterns on other transgenic reporters. Altogether, the resource reported here will enable more precisely targeted gene expression for studying intestinal processes, epithelial cell functions, and diseases affecting self-renewing tissues.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John A. Halsall ◽  
Simon Andrews ◽  
Felix Krueger ◽  
Charlotte E. Rutledge ◽  
Gabriella Ficz ◽  
...  

AbstractChromatin configuration influences gene expression in eukaryotes at multiple levels, from individual nucleosomes to chromatin domains several Mb long. Post-translational modifications (PTM) of core histones seem to be involved in chromatin structural transitions, but how remains unclear. To explore this, we used ChIP-seq and two cell types, HeLa and lymphoblastoid (LCL), to define how changes in chromatin packaging through the cell cycle influence the distributions of three transcription-associated histone modifications, H3K9ac, H3K4me3 and H3K27me3. We show that chromosome regions (bands) of 10–50 Mb, detectable by immunofluorescence microscopy of metaphase (M) chromosomes, are also present in G1 and G2. They comprise 1–5 Mb sub-bands that differ between HeLa and LCL but remain consistent through the cell cycle. The same sub-bands are defined by H3K9ac and H3K4me3, while H3K27me3 spreads more widely. We found little change between cell cycle phases, whether compared by 5 Kb rolling windows or when analysis was restricted to functional elements such as transcription start sites and topologically associating domains. Only a small number of genes showed cell-cycle related changes: at genes encoding proteins involved in mitosis, H3K9 became highly acetylated in G2M, possibly because of ongoing transcription. In conclusion, modified histone isoforms H3K9ac, H3K4me3 and H3K27me3 exhibit a characteristic genomic distribution at resolutions of 1 Mb and below that differs between HeLa and lymphoblastoid cells but remains remarkably consistent through the cell cycle. We suggest that this cell-type-specific chromosomal bar-code is part of a homeostatic mechanism by which cells retain their characteristic gene expression patterns, and hence their identity, through multiple mitoses.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Thu T. Duong ◽  
James Lim ◽  
Vidyullatha Vasireddy ◽  
Tyler Papp ◽  
Hung Nguyen ◽  
...  

Recombinant adeno-associated virus (rAAV), produced from a nonpathogenic parvovirus, has become an increasing popular vector for gene therapy applications in human clinical trials. However, transduction and transgene expression of rAAVs can differ acrossin vitroand ex vivo cellular transduction strategies. This study compared 11 rAAV serotypes, carrying one reporter transgene cassette containing a cytomegalovirus immediate-early enhancer (eCMV) and chicken beta actin (CBA) promoter driving the expression of an enhanced green-fluorescent protein (eGFP) gene, which was transduced into four different cell types: human iPSC, iPSC-derived RPE, iPSC-derived cortical, and dissociated embryonic day 18 rat cortical neurons. Each cell type was exposed to three multiplicity of infections (MOI: 1E4, 1E5, and 1E6 vg/cell). After 24, 48, 72, and 96 h posttransduction, GFP-expressing cells were examined and compared across dosage, time, and cell type. Retinal pigmented epithelium showed highest AAV-eGFP expression and iPSC cortical the lowest. At an MOI of 1E6 vg/cell, all serotypes show measurable levels of AAV-eGFP expression; moreover, AAV7m8 and AAV6 perform best across MOI and cell type. We conclude that serotype tropism is not only capsid dependent but also cell type plays a significant role in transgene expression dynamics.


1985 ◽  
Vol 5 (2) ◽  
pp. 419-421
Author(s):  
K M Zezulak ◽  
H Green

During the differentiation of preadipose 3T3 cells into adipose cells, the mRNAs for three proteins increase strikingly in abundance. To determine the degree of cell-type specificity in the expression of these mRNAs, we estimated their abundances in several nonadipose tissues of the mouse. None of these mRNAs was strictly confined to adipocytes, but the ensemble of three mRNAs was rather specific to adipocytes. Insofar as is revealed by these three markers, the distinctive phenotype of adipocytes is the result of the enhanced expression of a number of genes, none of which is completely silent in all other cell types.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sinisa Hrvatin ◽  
Christopher P Tzeng ◽  
M Aurel Nagy ◽  
Hume Stroud ◽  
Charalampia Koutsioumpa ◽  
...  

Enhancers are the primary DNA regulatory elements that confer cell type specificity of gene expression. Recent studies characterizing individual enhancers have revealed their potential to direct heterologous gene expression in a highly cell-type-specific manner. However, it has not yet been possible to systematically identify and test the function of enhancers for each of the many cell types in an organism. We have developed PESCA, a scalable and generalizable method that leverages ATAC- and single-cell RNA-sequencing protocols, to characterize cell-type-specific enhancers that should enable genetic access and perturbation of gene function across mammalian cell types. Focusing on the highly heterogeneous mammalian cerebral cortex, we apply PESCA to find enhancers and generate viral reagents capable of accessing and manipulating a subset of somatostatin-expressing cortical interneurons with high specificity. This study demonstrates the utility of this platform for developing new cell-type-specific viral reagents, with significant implications for both basic and translational research.


2012 ◽  
Vol 93 (5) ◽  
pp. 1046-1058 ◽  
Author(s):  
James C. Towler ◽  
Bahram Ebrahimi ◽  
Brian Lane ◽  
Andrew J. Davison ◽  
Derrick J. Dargan

Broad cell tropism contributes to the pathogenesis of human cytomegalovirus (HCMV), but the extent to which cell type influences HCMV gene expression is unclear. A bespoke HCMV DNA microarray was used to monitor the transcriptome activity of the low passage Merlin strain of HCMV at 12, 24, 48 and 72 h post-infection, during a single round of replication in human fetal foreskin fibroblast cells (HFFF-2s), human retinal pigmented epithelial cells (RPE-1s) and human astrocytoma cells (U373MGs). In order to correlate transcriptome activity with concurrent biological responses, viral cytopathic effect, growth kinetics and genomic loads were examined in the three cell types. The temporal expression pattern of viral genes was broadly similar in HFFF-2s and RPE-1s, but dramatically different in U373MGs. Of the 165 known HCMV protein-coding genes, 41 and 48 were differentially regulated in RPE-1s and U373MGs, respectively, compared with HFFF-2s, and 22 of these were differentially regulated in both RPE-1s and U373MGs. In RPE-1s, all differentially regulated genes were downregulated, but, in U373MGs, some were down- and others upregulated. Differentially regulated genes were identified among the immediate-early, early, early late and true-late viral gene classes. Grouping of downregulated genes according to function at landmark stages of the replication cycle led to the identification of potential bottleneck stages (genome replication, virion assembly, and virion maturation and release) that may account for cell type-dependent viral growth kinetics. The possibility that cell type-specific differences in expressed cellular factors are responsible for modulation of viral gene expression is discussed.


2022 ◽  
Author(s):  
Takaho Tsuchiya ◽  
Hiroki Hori ◽  
Haruka Ozaki

Motivation: Cell-cell communications regulate internal cellular states of the cell, e.g., gene expression and cell functions, and play pivotal roles in normal development and disease states. Furthermore, single-cell RNA sequencing methods have revealed cell-to-cell expression variability of highly variable genes (HVGs), which is also crucial. Nevertheless, the regulation on cell-to-cell expression variability of HVGs via cell-cell communications is still unexplored. The recent advent of spatial transcriptome measurement methods has linked gene expression profiles to the spatial context of single cells, which has provided opportunities to reveal those regulations. The existing computational methods extract genes with expression levels that are influenced by neighboring cell types based on the spatial transcriptome data. However, limitations remain in the quantitativeness and interpretability: it neither focuses on HVGs, considers cooperation of neighboring cell types, nor quantifies the degree of regulation with each neighboring cell type. Results: Here, we propose CCPLS (Cell-Cell communications analysis by Partial Least Square regression modeling), which is a statistical framework for identifying cell-cell communications as the effects of multiple neighboring cell types on cell-to-cell expression variability of HVGs, based on the spatial transcriptome data. For each cell type, CCPLS performs PLS regression modeling and reports coefficients as the quantitative index of the cell-cell communications. Evaluation using simulated data showed our method accurately estimated effects of multiple neighboring cell types on HVGs. Furthermore, by applying CCPLS to the two real datasets, we demonstrate CCPLS can be used to extract biologically interpretable insights from the inferred cell-cell communications.


2019 ◽  
Author(s):  
Elham Ahmadzadeh ◽  
N. Sumru Bayin ◽  
Xinli Qu ◽  
Aditi Singh ◽  
Linda Madisen ◽  
...  

AbstractThanks to many advances in genetic manipulation, mouse models have become very powerful in their ability to interrogate biological processes. In order to precisely target expression of a gene of interest to particular cell types, intersectional genetic approaches utilizing two promoter/enhancers unique to a cell type are ideal. Within these methodologies, variants that add temporal control of gene expression are the most powerful. We describe the development, validation and application of an intersectional approach that involves three transgenes, requiring the intersection of two promoter/enhancers to target gene expression to precise cell types. Furthermore, the approach utilizes available lines expressing tTA/rTA to control timing of gene expression based on whether doxycycline is absent or present, respectively. We also show that the approach can be extended to other animal models, using chicken embryos. We generated three mouse lines targeted at the Tigre (Igs7) locus with TRE-loxP-tdTomato-loxP upstream of three genes (p21, DTA and Ctgf) and combined them with Cre and tTA/rtTA lines that target expression to the cerebellum and limbs. Our tools will facilitate unraveling biological questions in multiple fields and organisms.Summary statementAhmadzadeh et al. present a collection of four mouse lines and genetic tools for misexpression-mediated manipulation of cellular activity with high spatiotemporal control, in a reversible manner.


Sign in / Sign up

Export Citation Format

Share Document