scholarly journals Large enhancement of thermoelectric performance in MoS2/h-BN heterostructure due to vacancy-induced band hybridization

2020 ◽  
Vol 117 (25) ◽  
pp. 13929-13936 ◽  
Author(s):  
Jing Wu ◽  
Yanpeng Liu ◽  
Yi Liu ◽  
Yongqing Cai ◽  
Yunshan Zhao ◽  
...  

Local impurity states arising from atomic vacancies in two-dimensional (2D) nanosheets are predicted to have a profound effect on charge transport due to resonant scattering and can be used to manipulate thermoelectric properties. However, the effects of these impurities are often masked by external fluctuations and turbostratic interfaces; therefore, it is challenging to probe the correlation between vacancy impurities and thermoelectric parameters experimentally. In this work, we demonstrate that n-type molybdenum disulfide (MoS2) supported on hexagonal boron nitride (h-BN) substrate reveals a large anomalous positive Seebeck coefficient with strong band hybridization. The presence of vacancies on MoS2with a large conduction subband splitting of 50.0 ± 5.0 meV may contribute to Kondo insulator-like properties. Furthermore, by tuning the chemical potential, the thermoelectric power factor can be enhanced by up to two orders of magnitude to 50 mW m−1K−2. Our work shows that defect engineering in 2D materials provides an effective strategy for controlling band structure and tuning thermoelectric transport.

Science ◽  
2014 ◽  
Vol 345 (6192) ◽  
pp. 58-61 ◽  
Author(s):  
Kayoung Lee ◽  
Babak Fallahazad ◽  
Jiamin Xue ◽  
David C. Dillen ◽  
Kyounghwan Kim ◽  
...  

Bilayer graphene has a distinctive electronic structure influenced by a complex interplay between various degrees of freedom. We probed its chemical potential using double bilayer graphene heterostructures, separated by a hexagonal boron nitride dielectric. The chemical potential has a nonlinear carrier density dependence and bears signatures of electron-electron interactions. The data allowed a direct measurement of the electric field–induced bandgap at zero magnetic field, the orbital Landau level (LL) energies, and the broken-symmetry quantum Hall state gaps at high magnetic fields. We observe spin-to-valley polarized transitions for all half-filled LLs, as well as emerging phases at filling factors ν = 0 and ν = ±2. Furthermore, the data reveal interaction-driven negative compressibility and electron-hole asymmetry in N = 0, 1 LLs.


2015 ◽  
Vol 29 (27) ◽  
pp. 1550189
Author(s):  
Q. R. Hou ◽  
B. F. Gu ◽  
Y. B. Chen

In this paper, we report a large enhancement in the thermoelectric power factor in CrSi2 film via Si:B (1 at.% B content) addition. The Si:B-enriched CrSi2 films are prepared by co-sputtering CrSi2 and heavily B-doped Si targets. Both X-ray diffraction patterns and Raman spectra confirm the formation of the crystalline phase CrSi2. Raman spectra also indicate the crystallization of the added Si:B. With the addition of Si:B, the electrical resistivity [Formula: see text] decreases especially at low temperatures while the Seebeck coefficient [Formula: see text] increases above 533 K. As a result, the thermoelectric power factor, [Formula: see text], is greatly enhanced and can reach [Formula: see text] at 583 K, which is much larger than that of the pure CrSi2 film.


Author(s):  
Ruiyi Liu ◽  
Xiaohu Wu ◽  
Zheng Cui

Abstract The photon tunneling probability is the most important thing in near-field radiative heat transfer (NFRHT). This work study the photon tunneling via coupling graphene plasmons with phonon polaritons in hexagonal boron nitride (hBN). We consider two cases of the optical axis of hBN along z-axis and x-axis, respectively. We investigate the NFRHT between graphene-covered bulk hBN, and compare it with that of bare bulk hBN. Our results show that in Reststrahlen bands, the coupling of graphene plasmons and phonon polaritons in hBN can either suppress or enhance the photon tunneling probability, depending on the chemical potential of graphene and frequency. This conclusion holds when the optiacal axis of hBN is either along z-axis or x-axis. The findings in this work not only deepen our understanding of coupling mechanism between graphene plasmons with phonon polaritons, but also provide a theoretical basis for controlling photon tunneling in graphene covered hyperbolic materials.


Author(s):  
Camille Maestre ◽  
Bérangère Toury ◽  
Philippe Steyer ◽  
Vincent Garnier ◽  
Catherine Journet

2013 ◽  
Vol 27 (23) ◽  
pp. 1330017 ◽  
Author(s):  
QING PENG ◽  
JARED CREAN ◽  
ALBERT K. DEARDEN ◽  
CHEN HUANG ◽  
XIAODONG WEN ◽  
...  

Atomic-thick monolayer two-dimensional materials present advantageous properties compared to their bulk counterparts. The properties and behavior of these monolayers can be modified by introducing defects, namely defect engineering. In this paper, we review a group of common two-dimensional crystals, including graphene, graphyne, graphdiyne, graphn-yne, silicene, germanene, hexagonal boron nitride monolayers and MoS2monolayers, focusing on the effect of the defect engineering on these two-dimensional monolayer materials. Defect engineering leads to the discovery of potentially exotic properties that make the field of two-dimensional crystals fertile for future investigations and emerging technological applications with precisely tailored properties.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 596
Author(s):  
He-xin Zhang ◽  
Byeong-Gwang Shin ◽  
Dong-Eun Lee ◽  
Keun-Byoung Yoon

Polypropylene/molybdenum disulfied (PP/MoS2) and Polypropylene/hexagonal boron nitride (PP/hBN) nanocomposites with varying concentration (0–6 wt %) were fabricated via in situ polymerization using two-dimensional (2D)-nanosheet/MgCl2-supported Ti-based Ziegler–Natta catalysts, which was prepared through a novel coagglomeration method. For catalyst preparation and interfacial interaction, MoS2 and hBN were modified with octadecylamine (ODA) and octyltriethoxysilane (OTES), respectively. Compared with those of pristine PP, thermal stability of composites was 70 °C higher and also tensile strength and Young’s modulus of the composites were up to 35% and 60% higher (even at small filler contents), respectively. The alkyl-modified 2D nanofillers were characterized by strong interfacial interactions between the nanofiller and the polymer matrix. The coagglomeration method employed in this work allows easy introduction and content manipulation of various 2D-nanosheets for the preparation of 2D-nanosheet/MgCl2-supported Ti-based Ziegler–Natta catalysts.


2021 ◽  
Author(s):  
Dipayan Roy ◽  
Karamjyoti Panigrahi ◽  
Uday Kumar Ghorui ◽  
Bikram Kumar Das ◽  
Souvik Bhattacharjee ◽  
...  

Incorporation of vacancies in a system considered as proficient defect engineering in general catalytic modulation. Among the two-dimensional materials, surface active sites’ deficiency and high band gap restrict hexagonal boron...


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Martin Heilmann ◽  
Victor Deinhart ◽  
Abbes Tahraoui ◽  
Katja Höflich ◽  
J. Marcelo J. Lopes

AbstractThe combination of two-dimensional (2D) materials into heterostructures enables the formation of atomically thin devices with designed properties. To achieve a high-density, bottom-up integration, the growth of these 2D heterostructures via van der Waals epitaxy (vdWE) is an attractive alternative to the currently mostly employed mechanical transfer, which is problematic in terms of scaling and reproducibility. Controlling the location of the nuclei formation remains a key challenge in vdWE. Here, a focused He ion beam is used to deterministically place defects in graphene substrates, which serve as preferential nucleation sites for the growth of insulating, 2D hexagonal boron nitride (h-BN). Therewith a mask-free, selective-area vdWE (SAvdWE) is demonstrated, in which nucleation yield and crystal quality of h-BN are controlled by the ion beam parameters used for defect formation. Moreover, h-BN grown via SAvdWE is shown to exhibit electron tunneling characteristics comparable to those of mechanically transferred layers, thereby lying the foundation for a reliable, high-density array fabrication of 2D heterostructures for device integration via defect engineering in 2D substrates.


Sign in / Sign up

Export Citation Format

Share Document