scholarly journals Physics successfully implements Lagrange multiplier optimization

2020 ◽  
Vol 117 (43) ◽  
pp. 26639-26650
Author(s):  
Sri Krishna Vadlamani ◽  
Tianyao Patrick Xiao ◽  
Eli Yablonovitch

Optimization is a major part of human effort. While being mathematical, optimization is also built into physics. For example, physics has the Principle of Least Action; the Principle of Minimum Power Dissipation, also called Minimum Entropy Generation; and the Variational Principle. Physics also has Physical Annealing, which, of course, preceded computational Simulated Annealing. Physics has the Adiabatic Principle, which, in its quantum form, is called Quantum Annealing. Thus, physical machines can solve the mathematical problem of optimization, including constraints. Binary constraints can be built into the physical optimization. In that case, the machines are digital in the same sense that a flip–flop is digital. A wide variety of machines have had recent success at optimizing the Ising magnetic energy. We demonstrate in this paper that almost all those machines perform optimization according to the Principle of Minimum Power Dissipation as put forth by Onsager. Further, we show that this optimization is in fact equivalent to Lagrange multiplier optimization for constrained problems. We find that the physical gain coefficients that drive those systems actually play the role of the corresponding Lagrange multipliers.

2020 ◽  
Vol 10 (4) ◽  
pp. 534-547
Author(s):  
Chiradeep Mukherjee ◽  
Saradindu Panda ◽  
Asish K. Mukhopadhyay ◽  
Bansibadan Maji

Background: The advancement of VLSI in the application of emerging nanotechnology explores quantum-dot cellular automata (QCA) which has got wide acceptance owing to its ultra-high operating speed, extremely low power dissipation with a considerable reduction in feature size. The QCA architectures are emerging as a potential alternative to the conventional complementary metal oxide semiconductor (CMOS) technology. Experimental: Since the register unit has a crucial role in digital data transfer between the electronic devices, such study leading to the design of cost-efficient and highly reliable QCA register is expected to be a prudent area of research. A thorough survey on the existing literature shows that the generic models of Serial-in Serial Out (SISO), Serial-in-Parallel-Out (SIPO), Parallel-In- Serial-Out (PISO) and Parallel-in-Parallel-Out (PIPO) registers are inadequate in terms of design parameters like effective area, delay, O-Cost, Costα, etc. Results: This work introduces a layered T gate for the design of the D flip flop (LTD unit), which can be broadly used in SISO, SIPO, PISO, and PIPO register designs. For detection and reporting of high susceptible errors and defects at the nanoscale, the reliability and defect tolerant analysis of LTD unit are also carried out in this work. The QCA design metrics for the general register layouts using LTD unit is modeled. Conclusion: Moreover, the cost metrics for the proposed LTD layouts are thoroughly studied to check the functional complexity, fabrication difficulty and irreversible power dissipation of QCA register layouts.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550094 ◽  
Author(s):  
Jizhong Shen ◽  
Liang Geng ◽  
Xuexiang Wu

Flip-flop is an important unit in digital integrated circuits, whose characteristics have a deep impact on the performance of the circuits. To reduce the power dissipation of flip-flops, clock triggering edge control technique is proposed, which is feasible to block one or two triggering edges of a clock cycle if they are redundant in dual-edge pulse-triggered flip-flops (DEPFFs). Based on this technique, redundant pulses can be suppressed when the input stays unchanged, and all the redundant triggerings are eliminated to reduce redundant transitions at the internal nodes of the flip-flop, so the power dissipation can be decreased. Then a novel DEPFF based on clock triggering edge control (DEPFF-CEC) technique is proposed. Based on the SMIC 65-nm technology, the post layout simulation results show that the proposed DEPFF-CEC gains an improvement of 8.03–39.83% in terms of power dissipation when the input switching activity is 10%, as compared with its counterparts. Thus, it is suitable for energy-efficient designs whose input data switching activity is low.


2002 ◽  
Vol 11 (01) ◽  
pp. 51-55
Author(s):  
ROBERT C. CHANG ◽  
L.-C. HSU ◽  
M.-C. SUN

A novel low-power and high-speed D flip-flop is presented in this letter. The flip-flop consists of a single low-power latch, which is controlled by a positive narrow pulse. Hence, fewer transistors are used and lower power consumption is achieved. HSPICE simulation results show that power dissipation of the proposed D flip-flop has been reduced up to 76%. The operating frequency of the flip-flop is also greatly increased.


2015 ◽  
Vol 13 (05) ◽  
pp. 1550038 ◽  
Author(s):  
Pouran Houshmand ◽  
Majid Haghparast

Reversible logic has been recently considered as an interesting and important issue in designing combinational and sequential circuits. The combination of reversible logic and multi-valued logic can improve power dissipation, time and space utilization rate of designed circuits. Only few works have been reported about sequential reversible circuits and almost there are no paper exhibited about quantum ternary reversible counter. In this paper, first we designed 2-qutrit and 3-qutrit quantum reversible ternary up-counters using quantum ternary reversible T-flip-flop and quantum reversible ternary gates. Then we proposed generalized quantum reversible ternary n-qutrit up-counter. We also introduced a new approach for designing any type of n-qutrit ternary and reversible counter. According to the results, we can conclude that applying second approach quantum reversible ternary up-counter is better than the others.


2014 ◽  
Vol 573 ◽  
pp. 187-193 ◽  
Author(s):  
Anitha Ponnusamy ◽  
Palaniappan Ramanathan

The recent increase in popularity of portable systems and rapid growth of packaging density in VLSI circuit’s has enable designers to design complex functional units on a single chip. Power, area and speed plays a major role in the design and optimization of an integrated circuit. Carry select adder is high speed final stage adder widely used in many data processing units. In this work, conventional D-flip flop is replaced by a new design using negative edge triggered D-flip flop. The proposed CSA is implemented in a faster partitioned Dadda multiplier and simulated by using MICROWIND tool. The results reveal that for 16 bit CSA improvement of power delay product (PDP) of the proposed design using negative edge triggered D flip flop is 78% & 18% when compared to CSA with BEC and CSA with conventional D flip flop. When CSA implemented in a partitioned Dadda multiplier it results in performance improvement of 74 % with little increase in total power dissipation.


Author(s):  
Abhijit Asthana ◽  
Shyam Akashe

D-Flip Flop (D_FF) is a very important component of various digital, analog and mixed signal systems and designs. It is obvious to come up with optimized D_FF, that cater the needs of low leakage power, less power dissipation, less chip area on the chip and low delays. This paper presents a comparative study of various logically optimized circuits of D_FF using 8T, 11T, 12T and conventional 18T D_FF. The simulation, test circuits, schematics & layouts etc are done on Cadence Virtuoso tool in 180 nm technology. Designs are compared on grounds of power dissipation, leakage power, delays and power delay product.


Author(s):  
Oboetswe S. Motsamai ◽  
Jan A. Visser ◽  
Montressor Morris ◽  
Danie J. de Kock

A technique for design optimization of a combustor is presented in this study. The technique entails the use of Computational Fluid Dynamics (CFD) and mathematical optimization to minimize the combustor exit temperature profile. The empirical and semi-empirical correlations commonly used for optimizing Combustor Exit Temperature profile do not guarantee optimum. As experimental approach is time consuming and costly, use is made of numerical techniques. Using CFD without mathematical optimisation on a trial-and-error basis, however, does not guarantee optimal solutions. A better approach that is viewed as too expensive is a combination of the two approaches, thereby, incorporating the influence of the variables automatically. In this study the combustor exit temperature profile is optimised. The optimum (uniform) combustor exit temperature profile depends on mainly the geometric parameters. The combustor exit temperature profile is affected as soon as flow enters the combustor. However, in gas turbine applications where care has been taken on the influence of upstream flow related conditions, the combustor exit temperature profile is changed by dilution hole pattern and size. In this study dilution hole parameters have been used as optimization variables. The combustor in the study is an experimental liquid fuelled atmospheric combustor with turbulent diffusion flame. The CFD simulations uses the Fluent code with Standard k-ε model. The optimisation is carried out with Snyman’s Dynamic-Q algorithm, which is specifically designed to handle constrained problems where the objective or constraint functions are expensive to evaluate. The optimization leads to a more uniform combustor exit temperature profile as compared to the original.


Growing demand for portable devices and fast increases in complexity of chip cause power dissipation is an important parameter. Power consumption and dissipation or generations of more heat possess a restriction in the direction of the integration of more transistors. Several methods have been proposed to reduce power dissipation from system level to device level. Subthreshold circuits are widely used in more advanced applications due to ultra low-power consumption. The present work targets on construction of linear feedback shift registers (LFSR) in weak inversion region and their performance observed in terms of parameters like power delay product (PDP). In CMOS circuits subthreshold region of operation allows a low-power for ample utilizations but this advantage get with the penalty of flat speed. For the entrenched and high speed applications, improving the speed of subthreshold designs is essential. To enhance this, operate the devices at maximum current over capacitance. LFSR architectures build with various types of D flip flop and XOR gate circuits are analyzed. Circuit level Simulation is carried out using 130 nm technologies.


Sign in / Sign up

Export Citation Format

Share Document