Therapeutic IGF-I receptor inhibition alters fibrocyte immune phenotype in thyroid-associated ophthalmopathy

2021 ◽  
Vol 118 (52) ◽  
pp. e2114244118
Author(s):  
Roshini Fernando ◽  
Oshadi Caldera ◽  
Terry J. Smith

Thyroid-associated ophthalmopathy (TAO) represents a disfiguring and potentially blinding autoimmune component of Graves’ disease. It appears to be driven, at least in part, by autoantibodies targeting the thyrotropin receptor (TSHR)/insulin-like growth factor I receptor (IGF-IR) complex. Actions mediated through either TSHR or IGF-IR are dependent on IGF-IR activity. CD34+ fibrocytes, monocyte lineage cells, reside uniquely in the TAO orbit, where they masquerade as CD34+ orbital fibroblasts. Fibrocytes present antigens to T cells through their display of the major histocompatibility complex class II (MHC II) while providing costimulation through B7 proteins (CD80, CD86, and programmed death-ligand 1 [PD-L1]). Here, we demonstrate that teprotumumab, an anti-IGF-IR inhibitor, attenuates constitutive expression and induction by the thyroid-stimulating hormone of MHC II and these B7 members in CD34+ fibrocytes. These actions are mediated through reduction of respective gene transcriptional activity. Other IGF-IR inhibitors (1H7 and linsitinib) and knocking down IGF-IR gene expression had similar effects. Interrogation of circulating fibrocytes collected from patients with TAO, prior to and following teprotumumab treatment in vivo during a phase 2 clinical trial, demonstrated reductions in cell-surface MHC II and B7 proteins similar to those found following IGF-IR inhibitor treatment in vitro. Teprotumumab therapy reduces levels of interferon-γ and IL-17A expression in circulating CD4+ T cells, effects that may be indirect and mediated through actions of the drug on fibrocytes. Teprotumumab was approved by the US Food and Drug Administration for TAO. Our current findings identify potential mechanisms through which teprotumumab might be eliciting its clinical response systemically in patients with TAO, potentially by restoring immune tolerance.

2010 ◽  
Vol 208 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Jennifer H. Cox ◽  
Noelyn M. Kljavin ◽  
Nandhini Ramamoorthi ◽  
Lauri Diehl ◽  
Marcel Batten ◽  
...  

Interleukin-27 (IL-27) is a cytokine known to have both proinflammatory and immunoregulatory functions. The latter appear to dominate in vivo, where IL-27 suppresses TH17 responses and promotes the differentiation of Tr1 cells expressing interferon-γ and IL-10 and lacking forkhead box P3 (Foxp3). Accordingly, IL-27 receptor α (Il27ra)–deficient mice suffer from exacerbated immune pathology when infected with various parasites or challenged with autoantigens. Because the role of IL-27 in human and experimental mouse colitis is controversial, we studied the consequences of Il27ra deletion in the mouse T cell transfer model of colitis and unexpectedly discovered a proinflammatory role of IL-27. Absence of Il27ra on transferred T cells resulted in diminished weight loss and reduced colonic inflammation. A greater fraction of transferred T cells assumed a Foxp3+ phenotype in the absence of Il27ra, suggesting that IL-27 functions to restrain regulatory T cell (Treg) development. Indeed, IL-27 suppressed Foxp3 induction in vitro and in an ovalbumin-dependent tolerization model in vivo. Furthermore, effector cell proliferation and IFN-γ production were reduced in the absence of Il27ra. Collectively, we describe a proinflammatory role of IL-27 in T cell–dependent intestinal inflammation and provide a rationale for targeting this cytokine in pathological situations that result from a breakdown in peripheral immune tolerance.


2014 ◽  
Vol 42 (04) ◽  
pp. 921-934 ◽  
Author(s):  
Jinjin Feng ◽  
Yingchun Wu ◽  
Yang Yang ◽  
Weiqi Jiang ◽  
Shaoping Hu ◽  
...  

Humulus scandens, rich in flavonoids, is a traditional Chinese medicine. It is widely used in China to treat tuberculosis, dysentery and chronic colitis. In this study, the major active faction of Humulus scandens (H.S) was prepared. Then, its immunosuppressive effects and underlying mechanisms on T cell activation were investigated in vitro and in vivo. Results showed that H.S significantly inhibited the proliferation of splenocytes induced by concanavalin A, lipopolysaccharides, and mixed-lymphocyte reaction in vitro. Additionally, H.S could dramatically suppress the proliferation and interferon-γ (IFN-γ) production from T cells stimulated by anti-CD3 and anti-CD28. Flow cytometric results confirmed that H.S could suppress the differentiation of IFN-γ-producing type 1 helper T cells (Th1). Furthermore, using ovalbumin immunization-induced T cell reaction and CD4+ T-cell-mediated delayed type hypersensitivity reaction, H.S the immunosuppressive effects of H.S was also demonstrated in vivo. Western blot results showed that H.S could impede the activation of both Erk1/2 and P38 in primary T cells triggered by anti-CD3/28. Collectively, the active fraction of H.S showed promising immunosuppressive activities both in vitro and in vivo.


PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e44365 ◽  
Author(s):  
Yooni Oh ◽  
Lucy Fleming ◽  
Bob Statham ◽  
Pip Hamblin ◽  
Paul Barnett ◽  
...  

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-23
Author(s):  
Joseph Rimando ◽  
Michael P. Rettig ◽  
Matt Christopher ◽  
Julie K Ritchey ◽  
Miriam Y Kim ◽  
...  

Background: Allogeneic hematopoietic cell transplantation (allo-HCT) is the only curative therapy for patients with high-risk and refractory acute myeloid leukemia (AML). Unfortunately, up to 50 percent of patients relapse after allo-HCT.Recent research has shown that 30-50 percent of AML samples from patients relapsing after allo-HCT have downregulation of MHC class II (MHC-II) expression, which may promote immune effector evasion and disease relapse. These studies also report that interferon gamma (IFNγ) can restore MHC-II expression. IFNγ has never been systemically administered after allo-HCT and would likely cause significant and potentially life-threatening toxicities. Reinduction of MHC-II expression may lead to re-engagement of immune effectors, restoration of the graft-versus-malignancy effect, and disease control. We hypothesized that T cell immunotherapies targeting AML cells will lead to T cell activation, localized IFNγ release, and upregulation of MHC-II on AML cells. Methods: For in vitro experiments, THP1 cells (THP1s), which have intermediate MHC-II expression, or primary human AML samples with low MHC-II expression from a patient relapsing after allo-HCT (AML-low cells) were co-cultured with or without T-cell immunotherapy and with or without human MHC-mismatched CD3+ T cells. The following T-cell immunotherapies were tested: flotetuzumab (FLZ), an investigational CD123 x CD3 bispecific DART® molecule; a CD33 x CD3 bispecific molecule (Creative Biolabs, Shirley, NY); and CD123-directed chimeric antigen receptor (CAR) T cells. THP1 IFNγ receptor-1 (IFNγR1) knockout cell lines were generated using CRISPR-Cas9. MHC-II expression was measured by flow cytometry and IFNγ concentrations via Luminex immunoflourescence assay. In order to rescue THP1s from FLZ-induced death and allow for longitudinal evaluation, a transwell plate system was used, placing THP1s, human CD3+ T cells, and FLZ in the top well and THP1s in the bottom well. This allowed for diffusion of IFNγ but not human T cells to the bottom wells, permitting MHC-II upregulation while limiting death. The upper and lower wells were coincubated together for 24 hours prior to harvesting of the THP1s in the lower well for longitudinal studies and mixed-lymphocyte reactions. For in vivo experiments, NOD-scid IL2Rgammanull mice expressing human IL-3, GM-CSF, and SCF (NSG-S) were irradiated with 250 rads and injected with 10e6 primary AML-low cells per mouse. After 5.5 weeks, mice were divided into the following groups: 1) untreated control; 2) FLZ only (2mg/kg); 3) human mismatched T cells only (10e7 T cells per mouse); 4) FLZ and T cells. Results: In vitro co-culture of THP1 or AML-low cells with FLZ and T cells led to significantly increased MHC-II expression at 48 hours when compared with the control, FLZ only, and T cell only groups (Figure 1A-B). Co-culture of THP1s with the CD123 CAR-T cells led to similar results. Although co-incubation with a CD33 x CD3 bispecific led to a similar result, the MHC-II upregulation was not nearly as dramatic as that seen with CD123 targeting agents. Using a transwell system to rescue THP1s from FLZ-mediated toxicity, FLZ-induced MHC-II upregulation on THP1s peaked at 48-72 hours (similar kinetics to what is seen with IFNγ alone). These THP1s with upregulated MHC-II activated third-party donor mismatched human CD4+ T cells to a greater extent than untreated THP1s controls. Co-cultures of THP1s with CD4+ T cells and FLZ induced the secretion of very high concentrations of IFNγ, and blockade of IFNγ signaling through knockout of IFNγR1 led to abrogation of the effect (Figure 1C-D). Finally, in an in vivo model, NSG-S mice injected with AML-low samples and treated with FLZ and T cells showed significant upregulation of MHC-II expression on the AML cells. Single cell RNA-sequencing of AML cells purified from these mice is ongoing. Conclusions: Use of FLZ and other T-cell immunotherapies targeting AML antigens led to both direct AML killing as well as significant upregulation of MHC-II expression on AML cells both in vitro and in vivo. The effect appears to be mediated primarily by IFNγ. T-cell immunotherapies represent a promising treatment approach for AML patients relapsing after allo-HCT and may lead to enhanced immune recognition in the 30-50% of patients who relapse after allo-HCT. Based on these results, a clinical trial treating patients relapsing after allo-HCT with FLZ is planned. Disclosures Christopher: Boulder Bioscience: Patents & Royalties: IP around the use of interferon gamma to treat stem cell transplant. Kim:Tmunity: Patents & Royalties: methods for gene editing in hematopoietic stem cells to enhance the therapeutic efficacy of antigen-specific immunotherapy (Licensed by University of Pennsylvania); Neoimmune Tech: Patents & Royalties: use of long-acting IL-7 analogs to enhance CAR T cells (licensed by Washington University). Muth:MacroGenics, Inc.: Current Employment, Current equity holder in publicly-traded company. Davidson:MacroGenics: Current Employment. DiPersio:Magenta Therapeutics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2428-2435 ◽  
Author(s):  
Aurore Saudemont ◽  
Nathalie Jouy ◽  
Dominique Hetuin ◽  
Bruno Quesnel

AbstractTumor dormancy is a phenomenon where small numbers of tumor cells persist in the host for months or years. We previously showed in the DA1-3b/C3H mouse model of acute myeloid leukemia that dormant tumor cells resist cytotoxic T-lymphocyte (CTL)–mediated killing because they overexpress B7-H1. Here, we vaccinated mice with DA1-3b cells transduced with CXCL10. Vaccinated mice developed a strong systemic immunity that led to the cure of established leukemia without persistence of dormant tumor cells. In vivo depletion of natural killer (NK) cells from the mice abrogated the protective effect of the vaccine. Long-term persistent leukemic cells resist CTL-mediated lysis but were killed by NK cells from mice vaccinated with DA1-3b/CXCL10. These NK cells expressed B7-H1. Recombinant CXCL10, CXCL9, CXCL11, and CXCL12 chemokines induced expression of B7-H1 on mouse and human NK cells in vitro. Mouse and human B7-H1+ NK cells induced proliferation of T cells and production of interferon γ and tumor necrosis factor α in vitro, and in vivo blocking of B7-H1 inhibited the protective effect of vaccination. Thus, CXCL10 induces antileukemic immunity, at least partially by stimulating NK cells to express B7-H1+. This antitumor effect is in contrast to the effect of B7-H1 when expressed on tumor cells because it stops cytotoxic lymphocytes from killing those tumor cells.


Blood ◽  
2006 ◽  
Vol 109 (6) ◽  
pp. 2488-2495 ◽  
Author(s):  
Sven Mostböck ◽  
Marta Catalfamo ◽  
Yutaka Tagaya ◽  
Jeffrey Schlom ◽  
Helen Sabzevari

AbstractImmunologic memory is associated with the activation and expansion of antigen-specific T cells, followed by clonal deletion and survival of a small number of memory T cells. This study establishes that effector and rested memory T cells can acquire major histocompatibility complex (MHC)/CD80 molecules (antigen presentasome [APS]) upon activation in vitro and after vaccination in vivo. We demonstrate for the first time that acquisition of APS by rested memory T cells is correlated with increased levels of apoptosis in vivo and up-regulation of caspase-3, bcl-x, bak, and bax in our in vitro studies. Moreover, our results demonstrate that memory T cells with acquired APS can indeed become cytotoxic T lymphocytes and kill other cells through perforin-mediated lysis. In addition, they retained the production of interferon γ and T-helper 2 (Th2) type cytokines. The acquisition of APS by memory T cells might be an important checkpoint leading to the clonal deletion of the majority of effector T cells, possibly allowing the surviving cells to become long-term memory cells by default.


2020 ◽  
Vol 4 (14) ◽  
pp. 3443-3456
Author(s):  
Gloria Castellano-González ◽  
Helen M. McGuire ◽  
Fabio Luciani ◽  
Leighton E. Clancy ◽  
Ziduo Li ◽  
...  

Abstract Invasive fungal infections are a major cause of disease and death in immunocompromised hosts, including patients undergoing allogeneic hematopoietic stem cell transplant (HSCT). Recovery of adaptive immunity after HSCT correlates strongly with recovery from fungal infection. Using initial selection of lymphocytes expressing the activation marker CD137 after fungal stimulation, we rapidly expanded a population of mainly CD4+ T cells with potent antifungal characteristics, including production of tumor necrosis factor α, interferon γ, interleukin-17, and granulocyte-macrophage colony stimulating factor. Cells were manufactured using a fully good manufacturing practice–compliant process. In vitro, the T cells responded to fungal antigens presented on fully and partially HLA-DRB1 antigen–matched presenting cells, including when the single common DRB1 antigen was allelically mismatched. Administration of antifungal T cells lead to reduction in the severity of pulmonary and cerebral infection in an experimental mouse model of Aspergillus. These data support the establishment of a bank of cryopreserved fungus-specific T cells using normal donors with common HLA DRB1 molecules and testing of partially HLA-matched third-party donor fungus-specific T cells as a potential therapeutic in patients with invasive fungal infection after HSCT.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3806-3816 ◽  
Author(s):  
Joachim L. Schultze ◽  
Mark J. Seamon ◽  
Sabine Michalak ◽  
John G. Gribben ◽  
Lee M. Nadler

Abstract Follicular lymphomas (FLs) rarely induce clinically significant T-cell–mediated responses. We showed that freshly isolated tumor infiltrating T cells (T-TILs) lack tumor-specific cytotoxicity. Stimulation of these T cells with FL cells in the presence of interleukin-2 (IL-2) and/or costimulation via CD28 does not lead to T-cell activation and expansion. In contrast, when stimulated with FL cells preactivated via CD40, autologous T-TILs can be expanded by the addition of exogenous IL-2. These T cells can be further expanded in vitro by the addition of exogenous IL-4, IL-7, or interferon-γ, but not IL-12. Once activated, these T cells showed FL-directed cytotoxicity in four of five patients tested. We concluded that autologous cytotoxic anti-FL–specific T cells exist, but can only be detected in vitro under optimized conditions for T-cell stimulation and expansion. This suggests that their frequency in vivo is either very low or that the microenvironment does not provide the necessary signals to activate these T cells. This model system allows dissection of the requisite conditions for activation and expansion of lymphoma-directed cytotoxicity and may permit expansion of previously activated cytotoxic T cells for adoptive transfer.


2017 ◽  
Vol 37 (4) ◽  
Author(s):  
Asha Recino ◽  
Kerry Barkan ◽  
F. Susan Wong ◽  
Graham Ladds ◽  
Anne Cooke ◽  
...  

Metabolism is of central importance for T cell survival and differentiation. It is well known that T cells cannot function in the absence of glucose, but it is less clear how they respond to excessive levels of glucose. In the present study, we investigated how increasing levels of glucose affect T-cell-mediated immune responses. We examined the effects of increased levels of glucose on CD8+ T-cell behaviour in vitro by assessing activation and cytokine production, as well as oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and intracellular signalling. In addition, we assessed in vivo proliferation, cytokine production and cytolytic activity of cells in chemically induced diabetic C57BL/6 mice. Elevated levels of glucose in in vitro cultures had modest effects on proliferation and cytokine production, while in vivo hyperglycaemia had no effect on CD8+ T-cell proliferation, interferon γ (IFNγ) production or cytolytic killing.


2005 ◽  
Vol 79 (1) ◽  
pp. 264-276 ◽  
Author(s):  
Jaehyuk Choi ◽  
Jason Walker ◽  
Sergei Boichuk ◽  
Nancy Kirkiles-Smith ◽  
Nicholas Torpey ◽  
...  

ABSTRACT Infected CD4+ T cells are the primary sites of human immunodeficiency virus type 1 (HIV-1) replication in vivo. However, signals from professional antigen-presenting cells (APCs), such as dendritic cells and macrophages, greatly enhance HIV-1 replication in T cells. Here, we report that in cocultures, vascular endothelial cells (ECs), which in humans can also serve as APCs, can enhance HIV-1 production of both CCR5- and CXCR4-utilizing strains approximately 50,000-fold. The observed HIV-1 replication enhancement conferred by ECs occurred only in memory CD4+ T cells, required expression of major histocompatibility complex class II (MHC-II) molecules by the ECs, and could not be conferred by fixed ECs, all of which are consistent with a requirement for EC-mediated T-cell activation via T-cell receptor (TCR) signaling. Deletion of nef (Nef−) decreased HIV-1 production by approximately 100-fold in T cells cocultured with ECs but had no effect on virus production in T cells cocultured with professional APCs or fibroblasts induced to express MHC-II. Human ECs do not express B7 costimulators, but Nef− replication in CD4+-T-cell and EC cocultures could not be rescued by anti-CD28 antibody. ECs act in trans to enhance wild-type but not Nef− replication and facilitate enhanced wild-type replication in naïve T cells when added to T-cell or B-lymphoblastoid cell cocultures, suggesting that ECs also provide a TCR-independent signal to infected T cells. Consistent with these in vitro observations, wild-type HIV-1 replicated 30- to 50-fold more than Nef− in human T cells infiltrating allogeneic human skin grafts on human huPBL-SCID/bg mice, an in vivo model of T-cell activation by ECs. Our studies suggest that ECs, which line the entire cardiovascular system and are, per force, in frequent contact with memory CD4+ T cells, provide signals to HIV-1-infected CD4+ T cells to greatly enhance HIV-1 production in a Nef-dependent manner, a mechanism that could contribute to the development of AIDS.


Sign in / Sign up

Export Citation Format

Share Document