scholarly journals Effect of Dietary Fatty Acids on Inflammatory Gene Expression in Healthy Humans

2009 ◽  
Vol 284 (23) ◽  
pp. 15400-15407 ◽  
Author(s):  
Kelly L. Weaver ◽  
Priscilla Ivester ◽  
Michael Seeds ◽  
L. Douglas Case ◽  
Jonathan P. Arm ◽  
...  
2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Shoug M. Alashmali ◽  
Lin Lin ◽  
Marc-Olivier Trépanier ◽  
Giulia Cisbani ◽  
Richard P. Bazinet

Abstract Background Neuroinflammation is thought to contribute to psychiatric and neurological disorders such as major depression and Alzheimer’s disease (AD). N-6 polyunsaturated fatty acids (PUFA) and molecules derived from them, including linoleic acid- and arachidonic acid-derived lipid mediators, are known to have pro-inflammatory properties in the periphery; however, this has yet to be tested in the brain. Lowering the consumption of n-6 PUFA is associated with a decreased risk of depression and AD in human observational studies. The purpose of this study was to investigate the inflammation-modulating effects of lowering dietary n-6 PUFA in the mouse hippocampus. Methods C57BL/6 male mice were fed either an n-6 PUFA deprived (2% of total fatty acids) or an n-6 PUFA adequate (23% of total fatty acids) diet from weaning to 12 weeks of age. Animals then underwent intracerebroventricular surgery, in which lipopolysaccharide (LPS) was injected into the left lateral ventricle of the brain. Hippocampi were collected at baseline and following LPS administration (1, 3, 7, and 14 days). A microarray (n = 3 per group) was used to identify candidate genes and results were validated by real-time PCR in a separate cohort of animals (n = 5–8 per group). Results Mice administered with LPS had significantly increased Gene Ontology categories associated with inflammation and immune responses. These effects were independent of changes in gene expression in any diet group. Results were validated for the effect of LPS treatment on astrocyte, cytokine, and chemokine markers, as well as some results of the diets on Ifrd2 and Mfsd2a expression. Conclusions LPS administration increases pro-inflammatory and lipid-metabolizing gene expression in the mouse hippocampus. An n-6 PUFA deprived diet modulated inflammatory gene expression by both increasing and decreasing inflammatory gene expression, without impairing the resolution of neuroinflammation following LPS administration.


Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 146 ◽  
Author(s):  
Antoni Sureda ◽  
Miquel Martorell ◽  
Maria del Mar Bibiloni ◽  
Cristina Bouzas ◽  
Laura Gallardo-Alfaro ◽  
...  

The aim of this study was to assess free fatty acids’ (FAs) ex vivo anti-/proinflammatory capabilities and their influence on inflammatory gene expression and H2O2 production by human peripheral blood mononuclear cells (PBMCs). Anthropometric and clinical measurements were performed in 26 participants with metabolic syndrome. Isolated PBMCs were incubated ex vivo for 2 h with several free fatty acids—palmitic, oleic, α-linolenic, γ-linolenic, arachidonic and docosahexaenoic at 50 μM, and lipopolysaccharide (LPS) alone or in combination. H2O2 production and IL6, NFκB, TLR2, TNFα, and COX-2 gene expressions were determined. Palmitic, γ-linolenic, and arachidonic acids showed minor effects on inflammatory gene expression, whereas oleic, α-linolenic, and docosahexaenoic acids reduced proinflammatory gene expression in LPS-stimulated PBMCs. Arachidonic and α-linolenic acids treatment enhanced LPS-stimulated H2O2 production by PBMCs, while palmitic, oleic, γ-linolenic, and docosahexaenoic acids did not exert significant effects. Oleic, α-linolenic, and docosahexaenoic acids induced anti-inflammatory responses in PBMCs. Arachidonic and α-linolenic acids enhanced the oxidative status of LPS-stimulated PBMCs. In conclusion, PBMC ex vivo assays are useful to assess the anti-/proinflammatory and redox-modulatory effects of fatty acids or other food bioactive compounds.


Lipids ◽  
2017 ◽  
Vol 52 (4) ◽  
pp. 315-325 ◽  
Author(s):  
Marine S. Da Silva ◽  
Pierre Julien ◽  
Jean-François Bilodeau ◽  
Olivier Barbier ◽  
Iwona Rudkowska

2007 ◽  
Vol 46 (6) ◽  
pp. 321-328 ◽  
Author(s):  
Danielle I. Shaw ◽  
Wendy L. Hall ◽  
Natasha R. Jeffs ◽  
Christine M. Williams

FEBS Journal ◽  
2014 ◽  
Vol 281 (9) ◽  
pp. 2228-2239 ◽  
Author(s):  
Hyun Kook Cho ◽  
So Young Kim ◽  
Seong Keun Yoo ◽  
Yung Hyun Choi ◽  
JaeHun Cheong

2017 ◽  
Vol 135 (2) ◽  
pp. 157-168 ◽  
Author(s):  
Daniela Mayumi Rocha ◽  
Josefina Bressan ◽  
Helen Hermana Hermsdorff

ABSTRACT CONTEXT AND OBJECTIVE: Diet is an important modifiable factor involved in obesity-induced inflammation. We reviewed clinical trials that assessed the effect of consumption of different fatty acids on the expression of inflammation-related genes, such as cytokines, adipokines, chemokines and transcription factors. DESIGN AND SETTING: Narrative review study conducted at a research center. METHODS: This was a review on the effect of fat intake on inflammatory gene expression in humans. RESULTS: Consumption of saturated fatty acids (SFAs) was related to postprandial upregulation of genes associated with pro-inflammatory pathways in peripheral blood mononuclear cells (PBMCs), in comparison with monounsaturated fatty acid (MUFA) or polyunsaturated fatty acid (PUFA) intake. In addition, acute intake of a high-SFA meal also induced a postprandial pro-inflammatory response for several inflammatory genes in subcutaneous adipose tissue. Both high-MUFA and high-PUFA diets showed anti-inflammatory profiles, or at least a less pronounced pro-inflammatory response than did SFA consumption. However, the results concerning the best substitute for SFAs were divergent because of the large variability in doses of MUFA (20% to 72% of energy intake) and n3 PUFA (0.4 g to 23.7% of energy intake) used in interventions. CONCLUSIONS: The lipid profile of the diet can modulate the genes relating to postprandial and long-term inflammation in PBMCs and adipose tissue. Identifying the optimal fat profile for inflammatory control may be a promising approach for treating chronic diseases such as obesity.


Sign in / Sign up

Export Citation Format

Share Document