scholarly journals Activation of the Transcription Factor GLI1 by WNT Signaling Underlies the Role of SULFATASE 2 as a Regulator of Tissue Regeneration

2013 ◽  
Vol 288 (29) ◽  
pp. 21389-21398 ◽  
Author(s):  
Ikuo Nakamura ◽  
Maite G. Fernandez-Barrena ◽  
Maria C. Ortiz-Ruiz ◽  
Luciana L. Almada ◽  
Chunling Hu ◽  
...  

Tissue regeneration requires the activation of a set of specific growth signaling pathways. The identity of these cascades and their biological roles are known; however, the molecular mechanisms regulating the interplay between these pathways remain poorly understood. Here, we define a new role for SULFATASE 2 (SULF2) in regulating tissue regeneration and define the WNT-GLI1 axis as a novel downstream effector for this sulfatase in a liver model of tissue regeneration. SULF2 is a heparan sulfate 6-O-endosulfatase, which releases growth factors from extracellular storage sites turning active multiple signaling pathways. We demonstrate that SULF2-KO mice display delayed regeneration after partial hepatectomy (PH). Mechanistic analysis of the SULF2-KO phenotype showed a decrease in WNT signaling pathway activity in vivo. In isolated hepatocytes, SULF2 deficiency blocked WNT-induced β-CATENIN nuclear translocation, TCF activation, and proliferation. Furthermore, we identified the transcription factor GLI1 as a novel target of the SULF2-WNT cascade. WNT induces GLI1 expression in a SULF2- and β-CATENIN-dependent manner. GLI1-KO mice phenocopied the SULF2-KO, showing delayed regeneration and decreased hepatocyte proliferation. Moreover, we identified CYCLIN D1, a key mediator of cell growth during tissue regeneration, as a GLI1 transcriptional target. GLI1 binds to the cyclin d1 promoter and regulates its activity and expression. Finally, restoring GLI1 expression in the liver of SULF2-KO mice after PH rescues CYCLIN D1 expression and hepatocyte proliferation to wild-type levels. Thus, together these findings define a novel pathway in which SULF2 regulates tissue regeneration in part via the activation of a novel WNT-GLI1-CYCLIN D1 pathway.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2438-2438
Author(s):  
Yoko Tabe ◽  
Kensuke Kojima ◽  
Linhua Jin ◽  
Takashi Miida ◽  
Sharon Shacham ◽  
...  

Abstract Abstract 2438 CRM1, a member of the importin b super family of nuclear transport receptors, functions as a major nuclear export factor by shuttling transcription factors including p53, p21, I-kB, and FOXO3a from nucleus to cytoplasm, thereby preventing their activity. CRM1 is also involved in the transport of rRNA and a certain subset of mRNAs including Cyclin D1. Upregulated CRM1 expression has been reported to correlate with poor prognosis in various hematopoietic malignancies. MCL is a subtype of B-cell lymphoma which is frequently resistant to standard chemotherapy. The t(11,14)(q13;32) translocation of MCL juxtaposes the cyclin D1 gene, and constitutively overexpressed cyclin D1 is believed to be associated with oncogenesis. Additional genetic events such as mutation/overexpression of TP53 have been reported as adverse prognostic indicators. TP53 mutations are rare in typical MCL, although about 30% of aggressive blastoid MCL have mt-TP53. Because of the multiple signaling pathways that are dysregulated in MCL, a novel strategy aimed at restoring multiple anti-oncogenetic pathways, especially targeting p53-independent signaling pathways, is of considerable interest. In this study, we investigated the antitumor effects and molecular mechanisms of the SINE CRM1 antagonist KPT-185 (Karyopharm Therapeutics) in 4 MCL cells with known TP53 mutation status (wt-TP53: JVM2, Z138; mt-TP53: MINO, Jeko-1). Treatment with KPT-185 resulted in reduction of cell proliferation in a concentration-dependent manner without significant differences between wt- and mt-TP53 cells (IC50 at 72hrs by trypan blue exclusion method; 35nM for Z138, 92 nM for JVM2, 96 nM for MINO, 103 nM for Jeko-1). KPT-185 exhibited limited pro- apoptotic activity in the tested MCL cells except Z138 (ED50 at 48hrs by Annexin V positivity; 62 nM for Z138, 910 nM for JVM2, 665 nM for MINO, 618 nM for Jeko-1). We then investigated KPT-185-induced TP53 target gene expression changes (24 genes) by TaqMan low density arrays (TLDA) (Applied Biosystems). In wt-TP53 JVM2 and Z138 cells, KPT-185 (100nM for Z138, MINO, and 500nM for JVM2, Jeko-1) upregulated classical p53 targets such as p21 and MDM2 mRNA (>2.0 fold), while there was no increase in mt-TP53 MINO and Jeko-1 cells. Of note, in both wt- and mt-TP53 cells, KPT-185 upregulated gene expression of PUMA which is a target of FOXO3a, p73 and p53 (3.3 fold for JVM2, 2.5 fold for Z138, 3.3 fold for MINO, 4.8 fold for Jeko-1). Recently, CRM1 has been reported to positively modulate the nuclear export of Cyclin D1 mRNA in a eIF4E-dependent manner. We therefore examined Cyclin D1 protein levels by western blot analysis, and observed significantly high baseline expression of Cyclin D1 in Z-138 cells which are highly sensitive to KPT-185, as compared to less sensitive MCL cells. KPT-185 treatment decreased Cyclin D1 expression in a dose-dependent manner (50nM and 100nM) after 12hrs of treatment accompanied by p21 induction and decreased p-Rb. These findings demonstrate that KPT-185 successfully inhibits CRM1 activity in MCL resulting in inhibition of Cyclin D1 and cell proliferation, and in the p-53-independent upregulation of pro-apoptotic PUMA. In conclusion, CRM1 inhibition by KPT-185 results in cell growth inhibition and in moderate cell death in a TP-53 independent manner. Results also suggest that the sensitivity to KPT-185 in MCL may be dependent on Cyclin D1 expression. Therefore, KPT-185may be an effective agent for the treatment of MCL. Disclosures: Shacham: Karyopharm Therapeutics: Employment. Kauffman:Karyopharm Therapeutics Inc: Employment.


2001 ◽  
Vol 21 (6) ◽  
pp. 1930-1941 ◽  
Author(s):  
Kevin N. Pennington ◽  
Julie A. Taylor ◽  
Gary D. Bren ◽  
Carlos V. Paya

ABSTRACT The molecular mechanisms regulating monocyte differentiation to macrophages remain unknown. Although the transcription factor NF-κB participates in multiple cell functions, its role in cell differentiation is ill defined. Since differentiated macrophages, in contrast to cycling monocytes, contain significant levels of NF-κB in the nuclei, we questioned whether this transcription factor is involved in macrophage differentiation. Phorbol 12-myristate 13-acetate (PMA)-induced differentiation of the promonocytic cell line U937 leads to persistent NF-κB nuclear translocation. We demonstrate here that an increased and persistent IKK activity correlates with monocyte differentiation leading to persistent NF-κB activation secondary to increased IκBα degradation via the IκB signal response domain (SRD). Promonocytic cells stably overexpressing an IκBα transgene containing SRD mutations fail to activate NF-κB and subsequently fail to survive the PMA-induced macrophage differentiation program. The differentiation-induced apoptosis was found to be dependent on tumor necrosis factor alpha. The protective effect of NF-κB is mediated through p21WAF1/Cip1, since this protein was found to be regulated in an NF-κB-dependent manner and to confer survival features during macrophage differentiation. Therefore, NF-κB plays a key role in cell differentiation by conferring cell survival that in the case of macrophages is mediated through p21WAF1/Cip1.


2006 ◽  
Vol 291 (5) ◽  
pp. G877-G884 ◽  
Author(s):  
Pau Sancho-Bru ◽  
Ramón Bataller ◽  
Jordi Colmenero ◽  
Xavier Gasull ◽  
Montserrat Moreno ◽  
...  

Catecholamines participate in the pathogenesis of portal hypertension and liver fibrosis through α1-adrenoceptors. However, the underlying cellular and molecular mechanisms are largely unknown. Here, we investigated the effects of norepinephrine (NE) on human hepatic stellate cells (HSC), which exert vasoactive, inflammatory, and fibrogenic actions in the injured liver. Adrenoceptor expression was assessed in human HSC by RT-PCR and immunocytochemistry. Intracellular Ca2+ concentration ([Ca2+]i) was studied in fura-2-loaded cells. Cell contraction was studied by assessing wrinkle formation and myosin light chain II (MLC II) phosphorylation. Cell proliferation and collagen-α1(I) expression were assessed by [3H]thymidine incorporation and quantitative PCR, respectively. NF-κB activation was assessed by luciferase reporter gene and p65 nuclear translocation. Chemokine secretion was assessed by ELISA. Normal human livers expressed α1A-adrenoceptors, which were markedly upregulated in livers with advanced fibrosis. Activated human HSC expressed α1A-adrenoceptors. NE induced multiple rapid [Ca2+]i oscillations (Ca2+ spikes). Prazosin (α1-blocker) completely prevented NE-induced Ca2+ spikes, whereas propranolol (nonspecific β-blocker) partially attenuated this effect. NE caused phosphorylation of MLC II and cell contraction. In contrast, NE did not affect cell proliferation or collagen-α1(I) expression. Importantly, NE stimulated the secretion of inflammatory chemokines (RANTES and interleukin-8) in a dose-dependent manner. Prazosin blocked NE-induced chemokine secretion. NE stimulated NF-κB activation. BAY 11-7082, a specific NF-κB inhibitor, blocked NE-induced chemokine secretion. We conclude that NE stimulates NF-κB and induces cell contraction and proinflammatory effects in human HSC. Catecholamines may participate in the pathogenesis of portal hypertension and liver fibrosis by targeting HSC.


2021 ◽  
Author(s):  
Yingtong Feng ◽  
Xuyang Guo ◽  
Hong Tian ◽  
Yuan He ◽  
Yang Li ◽  
...  

Type I interferons (IFN-I) play a key role in the host defense against virus infection, but porcine reproductive and respiratory syndrome virus (PRRSV) infection does not effectively activate IFN-I response, and the underlying molecular mechanisms are poorly characterized. In this study, a novel transcription factor of the heme oxygenase-1 (HO-1) gene, homeobox A3 (HOXA3), was screened and identified. Here, we found that HOXA3 was significantly increased during PRRSV infection. We demonstrated that HOXA3 promotes PRRSV replication by negatively regulating the HO-1 gene transcription, which is achieved by regulating type I interferons (IFN-I) production. A detailed analysis showed that PRRSV exploits HOXA3 to suppress beta interferon (IFN-β) and IFN-stimulated gene (ISG) expression in host cells. We also provide direct evidence that the activation of IFN-I by HO-1 depends on its interaction with IRF3. Then we further proved that deficiency of HOXA3 promoted the HO-1-IRF3 interaction, and subsequently enhanced IRF3 phosphorylation and nuclear translocation in PRRSV-infected cells. These data suggest that PRRSV uses HOXA3 to negatively regulate the transcription of the HO-1 gene to suppress the IFN-I response for immune evasion. IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS), caused by PRRSV, leads the pork industry worldwide to significant economic losses. HOXA3 is generally considered to be an important molecule in the process of body development and cell differentiation. Here, we found a novel transcription factor of the HO-1 gene, HOXA3, can negatively regulate the transcription of the HO-1 gene and play an important role in the suppression of IFN-I response by PRRSV. PRRSV induces the upregulation of HOXA3, which can negatively regulate HO-1 gene transcription, thereby weakening the interaction between HO-1 and IRF3 for inhibiting the type I IFN response. This study extends the function of HOXA3 to the virus field for the first time and provides new insights into PRRSV immune evasion mechanism.


2019 ◽  
Vol 86 (2) ◽  
pp. 171-176 ◽  
Author(s):  
Chenxu Zhao ◽  
Yazhou Wang ◽  
Xue Yuan ◽  
Guoquan Sun ◽  
Bingyu Shen ◽  
...  

AbstractSubacute ruminal acidosis (SARA) can increase the level of inflammation and induce rumenitis in dairy cows. Berberine (BBR) is the major active component of Rhizoma Coptidis, which is a type of Chinese anti-inflammatory drug for gastrointestinal diseases. The purpose of this study was to investigate the anti-inflammatory effects of BBR on lipopolysaccharide (LPS)-stimulated rumen epithelial cells (REC) and the underlying molecular mechanisms. REC were cultured and stimulated with LPS in the presence or absence of different concentrations of BBR. The results showed that cell viability was not affected by BBR. Moreover, BBR markedly decreased the concentrations and mRNA expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the LPS-treated REC in a dose-dependent manner. Importantly, Western blotting analysis showed that BBR significantly suppressed the protein expression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein (MyD88) and the phosphorylation of nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) in LPS-treated REC. Furthermore, the results of immunocytofluorescence showed that BBR significantly inhibited the nuclear translocation of NF-κB p65 induced by LPS treatment. In conclusion, the protective effects of BBR on LPS-induced inflammatory responses in REC may be due to its ability to suppress the TLR4-mediated NF-κB and MAPK signaling pathways. These findings suggest that BBR can be used as an anti-inflammatory drug to treat inflammation induced by SARA.


2014 ◽  
Vol 306 (12) ◽  
pp. C1119-C1128 ◽  
Author(s):  
Xiao-Juan Feng ◽  
Shu-Xia Liu ◽  
Chao Wu ◽  
Peng-Peng Kang ◽  
Qing-Juan Liu ◽  
...  

Our previous experiment confirmed that high-mobility group box chromosomal protein 1 (HMGB1) was involved in the pathogenesis of Lupus nephritis (LN) by upregulating the proliferation of the mouse mesangial cell line (MMC) through the cyclin D1/CDK4/p16 system, but the precise mechanism is still unknown. Therefore, in the present study, we demonstrated that HMGB1 induced the proliferation of MMC cells in a time- and concentration-dependent manner, downregulated phosphatase and tensin homolog deleted on chromosome ten (PTEN) expression, increased the level of Akt serine 473 phosphorylation, and induced p65 subunit nuclear translocation. The overexpression of PTEN prevented the upregulation of HMGB1-induced proliferation by blocking the activation of Akt. The knockdown of Akt by siRNA technology and blocking the nuclear factor-κB (NF-κB) pathway using pyrrolidine dithiocarbamate (PDTC) and SN50, inhibitors of NF-κB, both attenuated the HMGB1-induced proliferation by counteracting the activation of the cyclin D1. In addition, while sh-Akt partly blocked the nuclear translocation of the p65 subunit, PDTC did not affect the activation of the Akt induced by HMGB1 in MMC cells. These findings indicate that HMGB1 induced the proliferation of MMC cells by activating the PTEN/phosphoinositide-3-kinase (PI3K)/Akt/NF-κB signaling pathway.


2009 ◽  
Vol 83 (16) ◽  
pp. 8141-8152 ◽  
Author(s):  
Joseph D. Sherrill ◽  
Melissa P. Stropes ◽  
Olivia D. Schneider ◽  
Diana E. Koch ◽  
Fabiola M. Bittencourt ◽  
...  

ABSTRACT The presence of numerous G protein-coupled receptor (GPCR) homologs within the herpesvirus genomes suggests an essential role for these genes in viral replication in the infected host. Such is the case for murine cytomegalovirus (MCMV), where deletion of the M33 GPCR or replacement of M33 with a signaling defective mutant has been shown to severely attenuate replication in vivo. In the present study we utilized a genetically altered version of M33 (termed R131A) in combination with pharmacological inhibitors to further characterize the mechanisms by which M33 activates downstream signaling pathways. This R131A mutant of M33 fails to support salivary gland replication in vivo and, as such, is an important tool that can be used to examine the signaling activities of M33. We show that M33 stimulates the transcription factor CREB via heterotrimeric Gq/11 proteins and not through promiscuous coupling of M33 to the Gs pathway. Using inhibitors of signaling molecules downstream of Gq/11, we demonstrate that M33 stimulates CREB transcriptional activity in a phospholipase C-β and protein kinase C (PKC)-dependent manner. Finally, utilizing wild-type and R131A versions of M33, we show that M33-mediated activation of other signaling nodes, including the mitogen-activated protein kinase family member p38α and transcription factor NF-κB, occurs in the absence of Gq/11 and PKC signaling. The results from the present study indicate that M33 utilizes multiple mechanisms to modulate intracellular signaling cascades and suggest that signaling through PLC-β and PKC plays a central role in MCMV pathogenesis in vivo.


2008 ◽  
Vol 87 (8) ◽  
pp. 782-787 ◽  
Author(s):  
S. Goda ◽  
H. Inoue ◽  
Y. Kaneshita ◽  
Y. Nagano ◽  
Y. T. Ikeo ◽  
...  

Emdogain has been used clinically for periodontal regeneration, although the underlying molecular mechanisms are not clear at present. In this study, we hypothesized that Emdogain stimulated degradation of type I collagen via osteoblasts. We showed that Emdogain enhanced cell-mediated degradation of type I collagen in an MMP-dependent manner. Although MG-63 cells spontaneously produced a zymogen form of MMP-1, treatment with Emdogain significantly induced the generation of the active form of this enzyme. We demonstrated that MMP-3 was produced from MG63 cells in response to Emdogain in a MEK1/2-dependent manner. Concomitantly, blocking of MEK1/2 activation by U0126 significantly inhibited the generation of the active form of MMP-1 without affecting the total production of this collagenase. These results suggest that Emdogain facilitates tissue regeneration through the activation of the collagenase, MMP-1, that degrades matrix proteins in bone tissue microenvironments.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jianxing Zeng ◽  
Yingying Jing ◽  
Qionglan Wu ◽  
Jinhua Zeng ◽  
Lixin Wei ◽  
...  

The molecular mechanisms regulating differentiation of hepatic progenitor cells (HPCs), which play pivotal roles in liver regeneration and development, remain obscure. Autophagy and Wnt signaling pathways regulate the development and differentiation of stem cells in various organs. However, the roles of autophagy and Wnt signaling pathways in hepatic differentiation of HPCs are not well understood. Here, we describe the effects of autophagy and Wnt signaling pathways during hepatic differentiation of HPCs. We used a well-established rat hepatic progenitor cell line called WB-F344, which was treated with differentiation medium to promote differentiation of WB-F344 cells along the hepatic phenotype. Firstly, autophagy was highly activated in HPCs and gradually decreased during hepatic differentiation of HPCs. Induction of autophagy by rapamycin or starvation suppressed hepatic differentiation of HPCs. Secondly, Wnt3a signaling pathway was downregulated, and Wnt5a signaling pathway was upregulated in hepatic differentiation of HPCs. At last, Wnt3a signaling pathway was enhanced, and Wnt5a signaling pathway was inhibited by activation of autophagy during hepatic differentiation of HPCs. In summary, these results demonstrate that autophagy regulates hepatic differentiation of hepatic progenitor cells through Wnt signaling pathway.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1445
Author(s):  
Hu ◽  
Chang ◽  
Yi ◽  
Liu ◽  
Taylor ◽  
...  

CCN1 and CCN2 are members of the CCN family and play essential roles in the regulation of multiple female reproductive functions, including ovulation. Cyclooxygenase-2 (COX2) is a critical mediator of ovulation and can be induced by sphingosine-1-phosphate (S1P) through the S1P1/3-mediated Yes-associated protein (YAP) signaling. However, it is unclear whether CCN1 or CCN2 can mediate S1P-induced upregulation of COX2 expression and increase in prostaglandin E2 (PGE2) production in human granulosa-lutein (hGL) cells. In the present study, we investigated the effects of S1P on the expressions of CCN1 and CCN2 in hGL cells. Additionally, we used a dual inhibition approach (siRNA-mediated silencing and small molecular inhibitors) to investigate the molecular mechanisms of S1P effects. Our results showed that S1P treatment significantly upregulated the expression of CCN1 and CCN2 in a concentration-dependent manner in hGL cells. Additionally, inhibition or silencing of S1P1, but not S1P3, completely abolished the S1P-induced upregulation of CCN2 expression. Furthermore, we demonstrated that S1P-induced nuclear translocation of YAP and inhibition or silencing of YAP completely abolished the S1P-induced upregulation of CCN1 and CCN2 expression. Notably, silencing of CCN2, but not CCN1, completely reversed the S1P-induced upregulation of COX2 expression and the increase in PGE2 production. Thus, CCN2 mediates the S1P-induced upregulation of COX2 expression through the S1P1-mediated signaling pathway in hGL cells. Our findings expand our understanding of the molecular mechanism underlying the S1P-mediated cellular activities in the human ovary.


Sign in / Sign up

Export Citation Format

Share Document