Molecular Mechanisms of Antitumor Activity of the Selective Inhibitor of Nuclear Export (SINE) CRM1 Antagonist KPT-185 in Mantle Cell Lymphoma.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2438-2438
Author(s):  
Yoko Tabe ◽  
Kensuke Kojima ◽  
Linhua Jin ◽  
Takashi Miida ◽  
Sharon Shacham ◽  
...  

Abstract Abstract 2438 CRM1, a member of the importin b super family of nuclear transport receptors, functions as a major nuclear export factor by shuttling transcription factors including p53, p21, I-kB, and FOXO3a from nucleus to cytoplasm, thereby preventing their activity. CRM1 is also involved in the transport of rRNA and a certain subset of mRNAs including Cyclin D1. Upregulated CRM1 expression has been reported to correlate with poor prognosis in various hematopoietic malignancies. MCL is a subtype of B-cell lymphoma which is frequently resistant to standard chemotherapy. The t(11,14)(q13;32) translocation of MCL juxtaposes the cyclin D1 gene, and constitutively overexpressed cyclin D1 is believed to be associated with oncogenesis. Additional genetic events such as mutation/overexpression of TP53 have been reported as adverse prognostic indicators. TP53 mutations are rare in typical MCL, although about 30% of aggressive blastoid MCL have mt-TP53. Because of the multiple signaling pathways that are dysregulated in MCL, a novel strategy aimed at restoring multiple anti-oncogenetic pathways, especially targeting p53-independent signaling pathways, is of considerable interest. In this study, we investigated the antitumor effects and molecular mechanisms of the SINE CRM1 antagonist KPT-185 (Karyopharm Therapeutics) in 4 MCL cells with known TP53 mutation status (wt-TP53: JVM2, Z138; mt-TP53: MINO, Jeko-1). Treatment with KPT-185 resulted in reduction of cell proliferation in a concentration-dependent manner without significant differences between wt- and mt-TP53 cells (IC50 at 72hrs by trypan blue exclusion method; 35nM for Z138, 92 nM for JVM2, 96 nM for MINO, 103 nM for Jeko-1). KPT-185 exhibited limited pro- apoptotic activity in the tested MCL cells except Z138 (ED50 at 48hrs by Annexin V positivity; 62 nM for Z138, 910 nM for JVM2, 665 nM for MINO, 618 nM for Jeko-1). We then investigated KPT-185-induced TP53 target gene expression changes (24 genes) by TaqMan low density arrays (TLDA) (Applied Biosystems). In wt-TP53 JVM2 and Z138 cells, KPT-185 (100nM for Z138, MINO, and 500nM for JVM2, Jeko-1) upregulated classical p53 targets such as p21 and MDM2 mRNA (>2.0 fold), while there was no increase in mt-TP53 MINO and Jeko-1 cells. Of note, in both wt- and mt-TP53 cells, KPT-185 upregulated gene expression of PUMA which is a target of FOXO3a, p73 and p53 (3.3 fold for JVM2, 2.5 fold for Z138, 3.3 fold for MINO, 4.8 fold for Jeko-1). Recently, CRM1 has been reported to positively modulate the nuclear export of Cyclin D1 mRNA in a eIF4E-dependent manner. We therefore examined Cyclin D1 protein levels by western blot analysis, and observed significantly high baseline expression of Cyclin D1 in Z-138 cells which are highly sensitive to KPT-185, as compared to less sensitive MCL cells. KPT-185 treatment decreased Cyclin D1 expression in a dose-dependent manner (50nM and 100nM) after 12hrs of treatment accompanied by p21 induction and decreased p-Rb. These findings demonstrate that KPT-185 successfully inhibits CRM1 activity in MCL resulting in inhibition of Cyclin D1 and cell proliferation, and in the p-53-independent upregulation of pro-apoptotic PUMA. In conclusion, CRM1 inhibition by KPT-185 results in cell growth inhibition and in moderate cell death in a TP-53 independent manner. Results also suggest that the sensitivity to KPT-185 in MCL may be dependent on Cyclin D1 expression. Therefore, KPT-185may be an effective agent for the treatment of MCL. Disclosures: Shacham: Karyopharm Therapeutics: Employment. Kauffman:Karyopharm Therapeutics Inc: Employment.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4492-4492
Author(s):  
Changhong Yin ◽  
Sanghoon Lee ◽  
Timmy O'Connell ◽  
Janet Ayello ◽  
Carmella van de Ven ◽  
...  

Abstract BACKGROUND: Primary Mediastinal large B-cell lymphoma (PMBL) is a rare form of Non Hodgkin Lymphoma (NHL) representing 2% of mature B-cell non-Hodgkin lymphoma in patients less than 18 years of age (Lones/Cairo et al, JCO 2000; Burkhardt et al, BJH 2005). PMBL has histological features somewhere between Diffuse Large B-Cell Lymphoma (DLBCL) and classical HL (cHL) (Abramson et al, Blood 2005). Gene expression studies suggested that the molecular signature of PMBL had a striking resemblance to the expression profile of cHL (Rosenwald et al, JEM 2003). We have recently reported that a significant decrease in EFS among children and adolescent PMBL patients compared with other stage III non-PMBL pediatric DLBCL patients following FAB/LMB 96 therapy, suggesting that children and adolescent with PMBL required alternative treatment strategies (Gerrard/Cairo et al, Blood 2013). PMBL has been demonstrated to have an over-activated NF-kB pathway by gene expression profiling (Rosenwald et al, JEM 2003). Since over 95% of PMBL express CD20, targeting the CD20 receptor with a CD20 antibody is of high clinical interest. Obinutuzumab (GA101) is novel glycoengineered anti-CD20 targeted monoclonal antibody recognizing a unique CD20 type II epitope and it has been demonstrated to have greater efficacy in reducing tumor size, inducing remission and improving survival in other B-NHL xenograft models (Mössner et al, Blood 2010). Obinutuzumab has been recently approved by FDA for first line treatment of chronic lymphocytic leukemia (CLL) in combination with chlorambucil. OBJECTIVES: We hypothesize that obinutuzumab may be a future potential targeted agent for the treatment of PMBL, and therefore, we investigated whether obinutuzumab treatment results in significant changes in signaling pathways, genes expression, programmed cell death and cell proliferation in PMBL. METHODS: Karpas-1106P cells (DSMZ) were treated with obinutuzumab (generously provided by Dr. Klein, Roche) at every 24 hours (1-100ug/ml). qRT-PCR, western blot, MTS, Caspase 3/7 assay (Promega) and FACS analysis were performed. The BeadChip array (Illumina, HumanHT-12) was used for gene expression profiling. RESULTS: There was a significant decrease of cell proliferation in obinutuzumab-treated Karpas cells with 10ug/ml (0.69 ± 0.025, p<0.005) vs control (1.00 ± 0.000) at 48 hours. Concomitantly, there was a significant increase in programmed cell death in 10ug/ml obinutuzumab treated Karpas (37.80 ± 10.096, p<0.05) vs control (1.19 ± 0.762) at 48 hours. We also observed a significant decrease of CD20 expression (0.74± 0.010, p<0.05) with 10ug/ml obinutuzumab treatment at 48 hours. A total of 133 differentially expressed genes were identified by gene expression profiling (>1.5-fold, 0.57%) and 77.5% of genes including apoptosis related genes (CASP2 and PAK2) and MAPK signaling pathways (RASA1 and JUN) and EGR1 were upregulated and 22.5% of genes including ID3, GRAP and RAB6B were downregulated in obinutuzumab treated Karpas vs control (Fig 1). There were significant decreases of p-STAT6 (0.72± 0.011, p=0.01), p-Akt (0.69± 0.011, p<0.05), p-ikBα (0.70± 0.017, p<0.05) and p-Erk (0.56± 0.019, p<0.05) with 10ug/ml obinutuzumab treatment at 48 hours (Fig 2). Additionally, There were significant down-regulation of mRNA expression of Bcl-xL (0.91±0.011, p<0.04) and Bax (0.66±0.022, p<0.02) vs control. CONCLUSIONS: We observed that obinutuzumab significantly inhibited cell proliferation and induced programmed cell death and downregulated downstream of PI3k/Akt and NF-kB signaling pathways. Gene expression analysis indicated obinutuzumab induced changes in the expression of genes in Karpas that were involved in apoptosis and signaling pathways including CASP2, EGR1 and ID3. Future studies 1) will investigate the efficacy of combination therapies to enhance programmed cell death, and 2) will assess the proteomic signature induced by obinutuzumab in obinutuzumab sensitive and resistant PMBL, and furthermore, 3) will focus on the in vivo effects of obinutuzumab in a NOD/SCID PMBL xenograft mouse model. Obinutuzumab may be a future potential targeted agent for the adjuvant treatment of PMBL lymphoma. Disclosures No relevant conflicts of interest to declare.


2013 ◽  
Vol 288 (29) ◽  
pp. 21389-21398 ◽  
Author(s):  
Ikuo Nakamura ◽  
Maite G. Fernandez-Barrena ◽  
Maria C. Ortiz-Ruiz ◽  
Luciana L. Almada ◽  
Chunling Hu ◽  
...  

Tissue regeneration requires the activation of a set of specific growth signaling pathways. The identity of these cascades and their biological roles are known; however, the molecular mechanisms regulating the interplay between these pathways remain poorly understood. Here, we define a new role for SULFATASE 2 (SULF2) in regulating tissue regeneration and define the WNT-GLI1 axis as a novel downstream effector for this sulfatase in a liver model of tissue regeneration. SULF2 is a heparan sulfate 6-O-endosulfatase, which releases growth factors from extracellular storage sites turning active multiple signaling pathways. We demonstrate that SULF2-KO mice display delayed regeneration after partial hepatectomy (PH). Mechanistic analysis of the SULF2-KO phenotype showed a decrease in WNT signaling pathway activity in vivo. In isolated hepatocytes, SULF2 deficiency blocked WNT-induced β-CATENIN nuclear translocation, TCF activation, and proliferation. Furthermore, we identified the transcription factor GLI1 as a novel target of the SULF2-WNT cascade. WNT induces GLI1 expression in a SULF2- and β-CATENIN-dependent manner. GLI1-KO mice phenocopied the SULF2-KO, showing delayed regeneration and decreased hepatocyte proliferation. Moreover, we identified CYCLIN D1, a key mediator of cell growth during tissue regeneration, as a GLI1 transcriptional target. GLI1 binds to the cyclin d1 promoter and regulates its activity and expression. Finally, restoring GLI1 expression in the liver of SULF2-KO mice after PH rescues CYCLIN D1 expression and hepatocyte proliferation to wild-type levels. Thus, together these findings define a novel pathway in which SULF2 regulates tissue regeneration in part via the activation of a novel WNT-GLI1-CYCLIN D1 pathway.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 129-129 ◽  
Author(s):  
Fabrice Jardin ◽  
Anais Pujals ◽  
Laura Pelletier ◽  
Elodie Bohers ◽  
Vincent Camus ◽  
...  

Abstract Background and aim of the study Primary mediastinal B-cell lymphoma (PMBL) is an entity of aggressive B-cell lymphoma that is clinically and biologically distinct from the other molecular subtypes of diffuse large B-cell lymphoma (DLBCL). We recently detected by Whole exome sequencing a recurrent point mutation in the XPO1 (exportin 1) gene (also referred to as chromosome region maintenance 1; CRM1), which resulted in the Glu571Lys (p.E571K) missense substitution in 2 refractory/relapsed PMBL (Dubois et al., ICML 2015; Mareschal et al. AACR 2015). XPO1 is a member of the Karyopherin-b superfamily of nuclear transport proteins. XPO1 mediates the nuclear export of numerous RNAs and cellular regulatory proteins, including tumor suppressor proteins. This mutation is in the hydrophobic groove of XPO1 that binds to the leucine-rich nuclear export signal (NES) of cargo proteins. In this study, we investigated the prevalence, specificity, and biological / clinical relevance of XPO1 mutations in PMBL. Patients and methods High-throughput targeted or Sanger sequencing of 117 PMBL patients and 3 PMBL cell lines were performed. PMBL cases were defined either molecularly by gene expression profile (mPMBL cohort) or by standard histological method (hPMBL cohort) and enrolled in various LYSA (LYmphoma Study Association) clinical trials. To assess the frequency and specificity of XPO1 mutations, cases of classical Hodgkin lymphoma (cHL) and primary mediastinal grey zone lymphoma (MGZL) were analysed. Cell experiments were performed to assess the impact of the E571 mutation on the activity of selective inhibitor of nuclear export (SINE) molecules. Results XPO1 mutations were present in 28/117 (24%) PMBL cases but were rare in cHL cases (1/19, 5%) and absent from MGZL cases (0/20). A higher prevalence (50%) of the recurrent codon 571 variant (p.E571K) was observed in PMBL cases defined by gene expression profiling (n = 32), as compared to hPMBL cases (n = 85, 13%). No difference in age, International Prognostic Index (IPI) or bulky mass was observed between the PMBL patients harboring mutant and wild-type XPO1 in the overall cohort whereas a female predominance was noticed in the mPMBL cohort. Based on a median follow-up duration of 42 months, XPO1 mutant patients exhibited significantly decreased PFS (3y PFS = 74% [CI95% 55-100]) compared to wild-type patients (3y PFS = 94% [CI95% 83-100], p=0.049) in the mPMBL cohort. In 4/4 tested cases, the E571K variant was also detected in cell-free circulating plasmatic DNA, suggesting that the mutation can be used as a biomarker at the time of diagnosis and during follow-up. Importantly, the E571K variant was detected as a heterozygous mutation in MedB-1, a PMBL-derived cell line, whereas the two other PMBL cell lines tested, Karpas1106 and U-2940, did not display any variants in XPO1 exon 15. KPT-185, the SINE compound that blocks XPO1-dependent nuclear export, induced a dose-dependent decrease in cell proliferation and increased cell death in the PMBL cell lines harbouring wild type or mutated alleles. To test directly if XPO1 mutation from E571 to E571K alters XPO1 inhibition by SINE compounds, the mutated protein was tested in vitro. The E571XPO1 mutated allele was transiently transfected into osteosarcoma U2OS cells which stably express the fluorescently labelled XPO1 cargo REV. Cells were treated with the clinical SINE compound selinexor, which is currently in phase I/II clinical trials and nuclear localization of REV-GFP was analysed in red transfected cells. The results showed that the nuclear export of the mutated XPO1 protein was inhibited by selinexor similarly to the wild-type XPO1 protein (Figure 1). Conclusion Although the oncogenic properties of XPO1 mutations remain to be determined, their recurrent selection in PMBL strongly supports their involvement in the pathogenesis of this curable aggressive B-cell lymphoma. XPO1 mutations were primarily observed in young female patients who displayed a typical PMBL molecular signature. The E571K XPO1 mutation represents a novel hallmark of PMBL but does not seem to interfere with SINE activity. Rev-GFP (green fluorescent) expressing U2OS cells were transfected with wild type XPO1-RFP (red fluorescent protein), XPO1-C528S-RFP, XPO1-E571K-mCherry, and XPO1-E571G-mCherry. The cells were then treated with 1µM KPT-330 for 8 hours. Figure 1. Rev-GFP expressing U2OS cells transfected with XPO1 variants. Figure 1. Rev-GFP expressing U2OS cells transfected with XPO1 variants. Disclosures Landesman: Karyopharm Therapeutics: Employment. Senapedis:Karyopharm Therapeutics, Inc.: Employment, Patents & Royalties. Argueta:Karyopharm Therapeutics: Employment. Milpied:Celgene: Honoraria, Research Funding.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1454-1463 ◽  
Author(s):  
Nathalie Chevallier ◽  
Connie M. Corcoran ◽  
Christine Lennon ◽  
Elizabeth Hyjek ◽  
Amy Chadburn ◽  
...  

Abstract The multiplicity of transcription factors involved in hematologic malignancies suggests a complicated scenario in which many different molecular mechanisms lead to malignant transformation. We hypothesized that some of these proteins might physically and functionally interact and thus mechanistically link different diseases. The ETO protein of t(8;21) acute myeloid leukemia (AML) is an excellent candidate as a common factor because it is normally expressed in human hematopoietic cells, it binds to histone deacetylases (HDACs), and it interacts with the PLZF protein of t(11;17) acute promyelocytic leukemia. To determine whether ETO functionally links a broader range of disease entities, we asked whether ETO forms a complex with the Bcl-6 oncoprotein of B-cell lymphomas. We found that ETO and Bcl-6 are coexpressed in normal and malignant lymphoid tissue, where they interact and colocalize in nuclear speckles. ETO binds to the fourth zinc finger of Bcl-6, enhances Bcl-6 repression of artificial and endogenous genes in an HDAC-dependent manner, and forms a complex with Bcl-6 on the promoters of its endogenous target genes in B-cell lymphoma cells. Therefore, ETO is a bona fide corepressor that links the transcriptional pathogenesis of acute leukemias and B-cell lymphomas and offers a compelling target for transcriptional therapy of hematologic malignancies.


2019 ◽  
Vol 62 (1) ◽  
Author(s):  
Seung Mi Choi ◽  
Do-Hee Kim ◽  
Kyung-Soo Chun ◽  
Joon-Seok Choi

Abstract Melanoma is the leading cause of skin cancer deaths, and the poor prognosis of metastatic melanoma has made needs for a novel pharmacological treatment or efficient intervention. Carnosol, a major polyphenolic compound from Rosmarinus officinalis, has a wide range of biological activities including anti-cancer effect. However, the underlying molecular mechanisms of its anti-cancer effect remain poorly understood in malignant human melanoma cells. In the present study, we investigate the apoptotic effect and the underlying anti-cancer mechanisms of carnosol. Our results revealed that carnosol strongly induced apoptosis against human melanoma G361 cells in a dose- and time-dependent manner, and caused dramatical elevation in cellular reactive oxygen species (ROS) level during apoptosis. In mechanistic studies, carnosol treatment decreased protein level of anti-apoptotic B‑cell lymphoma 2 (Bcl-2) and B cell lymphoma-extra large (Bcl-xL), however, increased level of pro-apoptotic Bcl-2-associated X protein (Bax) protein. Moreover, carnosol escalated cellular level of p53, which was accompanied by a decline of mouse double minute 2 homolog (MDM2) level. Also, carnosol inhibited activation of Src and signal transducer and activator of transcription 3 (STAT3), therefore down-regulated STAT3-dependent gene expression, such as D-series cyclin and survivin. These changes by carnosol were attenuated by pre-treatment of N-acetyl cysteine, and abolished progression of carnosol-induced apoptosis. In conclusion, carnosol induced apoptosis in human melanoma G361 cells through ROS generation and inhibition of STAT3-mediated pathway. Our results provide molecular bases of carnosol-induced apoptosis, and suggest a novel candidate for human melanoma treatment.


2020 ◽  
Vol 19 (8) ◽  
pp. 1619-1623
Author(s):  
Zhixiang Su ◽  
Bin Yu ◽  
Zhiping Deng ◽  
Haifeng Sun

Purpose: To investigate the effect of isoliquiritigenin (ISL) on diffuse large B-cell lymphoma (DLBCL) cells and its underlying mechanism of action.Methods: The DLBCL cell line OCI-Ly19 was used in this study. Cell proliferation was measured by MTT assay. Apoptosis was evaluated using flow cytometry. Phosphorylation of Akt and mTOR was assessed using Western blotting.Results: DLBCL cell proliferation was suppressed by ISL in a concentration-dependent manner. The number of apoptotic cells increased following ISL treatment in a concentration-dependent manner (p < 0.05). ISL treatment also stopped the cell cycle at the G1 phase in a concentration-dependent manner. Western blot analysis indicated that there was no significant Akt and mTOR expression in cells treated with 10, 20, or 50 μM ISL (p < 0.05). However, Akt and mTOR phosphorylation was upregulated following treatment with 10, 20, or 50 μM ISL in a concentration-dependent manner (p < 0.05).Conclusion: The results demonstrate that ISL inhibits DLBCL cell proliferation and promotes cell apoptosis by blocking the cell cycle transition from the G1 to S phase, which is mediated by the inactivation of the Akt/mTOR signaling pathway. Keywords: Isoliquiritigenin, Cell survival, Diffuse large B-cell lymphoma, Akt/mTOR signaling pathway


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2375-2375
Author(s):  
Nicolas Blin ◽  
Celine Bossard ◽  
Jean-Luc Harousseau ◽  
Catherine Charbonnel ◽  
Wilfried Gouraud ◽  
...  

Abstract Gene expression profiling has provided new insights into the understanding of mature B cell neoplasms by relating each one to its normal counterpart, so that they can be to some extent classified according to the corresponding normal B-cell stage. Thus, diffuse large B cell (DLBCL) and follicular lymphoma (FL) have been related to a germinal center precursor whereas mantle cell lymphoma (MCL) or marginal zone lymphoma (MZL) are more likely to derive from naïve and memory B cell, respectively. However, little is still known about the physiopathology of B-cell lymphomas and particularly the deregulated pathways involved in their oncogenesis. To further investigate that point, we performed laser capture microdissection (LCM) of the three anatomic lymphoid compartments (i.e germinal center, mantle zone and marginal zone) taken from nine normal spleens and lymph nodes and magnetic cell separation of the four normal B cell subpopulations (i.e naïve B cells, centroblasts, centrocytes and memory B cells) purified from twelve normal tonsils for gene expression profiling by cDNA microarray. These molecular profiles have been compared to those of the four most frequent mature B cell neoplasms in adult (i.e DLBCL, FL, MZL and MCL), each one isolated from five previously untreated patients. Unsupervised analysis by hierarchical clustering of the normal anatomic and cellular populations could discriminate the germinal from the extra-germinal populations by genes involved in cell proliferation (e.g. E2F5, CCNB2, BUB1B and AURKB), DNA repair (e.g. PCNA and EXO1), cytokine secretion (e.g. IL8, IL10RB, IL4R and TGFBI) and apoptosis (e.g. CASP8, CASP10, BCL2 and FAS). Supervised analysis of the comparison between each B-cell lymphoma and its anatomic and cellular physiologic equivalent identified molecular deregulations concerning several genes’families characterizing the different histologic subtypes. Genes associated with cellular adhesion and ubiquitin cycle were significantly up-regulated in MCL (FCGBP, ITGAE, USP7, VCAM1) and MZL (CTGF, CDH1, ITGAE) whereas germinal center derived lymphomas (i.e. DLBCL and FL) mainly showed up-regulation of genes involved in cell proliferation (TNFRSF17, SEPT8) and immune response (FCER1G, XBP1, IL1RN). Few deregulated genes were common to the four subtypes, principally associated with cell proliferation (CYR61, GPNMB), cytosqueleton organization (EPB41L3) and carbohydrates metabolism (GNPDA1), suggesting potential similar oncogenic pathways. Those preliminary results are compatible with both subtype-specific and overall mechanisms of lympomagenesis and should be verified in a wider range of samples to confirm the oncogenic events involved in this heterogeneous disease.


2011 ◽  
Vol 300 (4) ◽  
pp. H1210-H1221 ◽  
Author(s):  
Jingjing Cai ◽  
Yuan Hong ◽  
Chunyan Weng ◽  
Chen Tan ◽  
Julianne Imperato-McGinley ◽  
...  

Growing evidences support that androgen displays beneficial effects on cardiovascular functions although the mechanism of androgen actions remains to be elucidated. Modulation of endothelial cell growth and function is a potential mechanism of androgen actions. We demonstrated in the present study that androgens [dihydrotestosterone (DHT) and testosterone], but not 17β-estradiol, produced a time- and dose-dependent induction of cell proliferation in primary human aortic endothelial cells (HAECs) as evident by increases in viable cell number and DNA biosynthesis. Real-time qRT-PCR analysis showed that DHT induced androgen receptor (AR), cyclin A, cyclin D1, and vascular endothelial growth factor (VEGF) gene expression in a dose- and time-dependent manner. The addition of casodex, a specific AR antagonist, or transfection of a specific AR siRNA blocked DHT-induced cell proliferation and target gene expression, indicating that the DHT effects are mediated via AR. Moreover, coadministration of SU5416 to block VEGF receptors, or transfection of a specific VEGF-A siRNA to knockdown VEGF expression, produced a dose-dependent blockade of DHT induction of cell proliferation and cyclin A gene expression. Interestingly, roscovitine, a selective cyclin-dependent kinase inhibitor, also blocked the DHT stimulation of cell proliferation with a selective inhibition of DHT-induced VEGF-A expression. These results indicate that androgens acting on AR stimulate cell proliferation through upregulation of VEGF-A, cyclin A, and cyclin D1 in HAECs, which may be beneficial to cardiovascular functions since endothelial cell proliferation could assist the repair of endothelial injury/damage in cardiovascular system.


2012 ◽  
Vol 109 (1) ◽  
pp. 4-16 ◽  
Author(s):  
María Elvira López-Oliva ◽  
María José Pozuelo ◽  
Rafael Rotger ◽  
Emilia Muñoz-Martínez ◽  
Isabel Goñi

Grape antioxidant dietary fibre (GADF) is a grape product rich in dietary fibre and natural antioxidants. We reported previously that GADF intake reduced apoptosis and induced a pro-reducing shift in the glutathione (GSH) redox status of the rat proximal colonic mucosa. The aim of the study was to elucidate the molecular mechanisms responsible for the anti-apoptotic effect of GADF and their association with the oxidative environment of the distal colonic mucosa. The ability of GADF to modify colonic crypt cell proliferation was also investigated. Male Wistar rats (n20) were fed with diets containing either cellulose (control group) or GADF (GADF group) as fibre for 4 weeks. GADF did not modify cell proliferation but induced a significant reduction of colonic apoptosis. The anti-apoptotic proteins Bcl-2 (B-cell lymphoma-2) and Bcl-xL(B-cell lymphoma extra large) were up-regulated in the mitochondria and down-regulated in the cytosol of the GADF mucosa, whereas the opposite was found for the pro-apoptotic protein Bax (Bcl-2-associated X protein), leading to an anti-apoptotic shift in the pattern of expression of the Bcl-2 family. Cytosolic cytochromecand cleaved caspase-3 levels and caspase-3 activity were reduced by GADF. The modulation of the antioxidant enzyme system and the increase of the cytosolic GSH:glutathione disulfide (GSSG) ratio elicited by GADF helped to reduce oxidative damage. The cytosolic GSH:GSSG ratio was negatively related to apoptosis. These results indicate that GADF acts on the expression of the pro- and anti- apoptotic Bcl-2 proteins, attenuating the mitochondrial apoptotic pathway in the distal colonic mucosa. This effect appears to be associated with the antioxidant properties of GADF.


Sign in / Sign up

Export Citation Format

Share Document