scholarly journals Phosphorylation of the oncogenic transcription factor ERG in prostate cells dissociates polycomb repressive complex 2, allowing target gene activation

2017 ◽  
Vol 292 (42) ◽  
pp. 17225-17235 ◽  
Author(s):  
Vivekananda Kedage ◽  
Brady G. Strittmatter ◽  
Paige B. Dausinas ◽  
Peter C. Hollenhorst

In ∼50% of prostate cancers, chromosomal rearrangements cause the fusion of the promoter and 5′-UTR of the androgen-regulated TMPRSS2 (transmembrane protease, serine 2) gene to the open reading frame of ERG, encoding an ETS family transcription factor. This fusion results in expression of full-length or N-terminally truncated ERG protein in prostate epithelia. ERG is not expressed in normal prostate epithelia, but when expressed, it promotes tumorigenesis via altered gene expression, stimulating epithelial-mesenchymal transition, cellular migration/invasion, and transformation. However, limited knowledge about the molecular mechanisms of ERG function in prostate cells has hampered efforts to therapeutically target ERG. ERK-mediated phosphorylation of ERG is required for ERG functions in prostate cells, but the reason for this requirement is unknown. Here, we report a mechanism whereby ERK-mediated phosphorylation of ERG at one serine residue causes a conformational change that allows ERK phosphorylation at a second serine residue, Ser-96. We found that the Ser-96 phosphorylation resulted in dissociation of EZH2 and SUZ12, components of polycomb repressive complex 2 (PRC2), transcriptional activation of ERG target genes, and increased cell migration. Conversely, loss of ERG phosphorylation at Ser-96 resulted in recruitment of EZH2 across the ERG-cistrome and a genome-wide loss of ERG-mediated transcriptional activation and cell migration. In conclusion, our findings have identified critical molecular mechanisms involving ERK-mediated ERG activation that could be exploited for therapeutic intervention in ERG-positive prostate cancers.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yihe Yu ◽  
Dalong Guo ◽  
Guirong Li ◽  
Yingjun Yang ◽  
Guohai Zhang ◽  
...  

Abstract Background Resveratrol is a naturally occurring plant stilbene that exhibits a wide range of valuable biological and pharmacological properties. Although the beneficial effects of trans-resveratrol to human health and plant protection against fungal pathogens and abiotic stresses are well-established, yet little is known about the molecular mechanisms regulating stilbene biosynthesis in plant defense progress. Results Here, we cloned and identified the Chinese wild grape (Vitis davidii) R2R3-MYB transcription factor VdMYB1, which activates defense responses against invading pathogen. VdMYB1 transcripts were significantly upregulated after inoculation with the grapevine powdery mildew fungus Erysiphe necator (Schw.) Burr. Transient expression analysis using onion epidermal cells and Arabidopsis thaliana protoplasts showed that VdMYB1 was localized in the nucleus. Yeast one-hybrid assays revealed that VdMYB1 acts as a transcriptional activator. Grapevine leaves transiently overexpressing VdMYB1 showed a lower number of fungal conidiophores compared with wild-type leaves. Overexpression of VdMYB1 in grapevine leaves did not alter the expression of genes in salicylic acid- and jasmonate-dependent pathways, but affected the expression of stilbene synthase (STS) genes, key regulators of flavonoid metabolism. Results of electrophoretic mobility shift assays and in vivo transcriptional activation assays showed that VdMYB1 binds to the MYB binding site (MYBBS) in the STS2 gene promoter, thus activating STS2 transcription. In heterologous expression assays using tobacco leaves, VdMYB1 activated STS2 gene expression and increased the accumulation of resveratrol. Conclusions Our study showed that VdMYB1 activates STS2 gene expression to positively regulate defense responses, and increases the content of resveratrol in leaves.


2020 ◽  
Vol 71 (20) ◽  
pp. 6512-6523
Author(s):  
Liyuan Wu ◽  
Yiyi Guo ◽  
Shengguan Cai ◽  
Liuhui Kuang ◽  
Qiufang Shen ◽  
...  

Abstract Aluminum (Al) toxicity is a major abiotic stress that restricts crop production in acid soils. Plants have evolved internal and external mechanisms of tolerance, and among them it is well known that AtSTOP1 and OsART1 are key transcription factors involved in tolerance through regulation of multiple downstream genes. Here, we identified the closest homolog of these two proteins in barley, namely HvATF1, Al-tolerance Transcription Factor 1, and determined its potential function in Al stress. HvATF1 is expressed in the nucleus, and functions in transcriptional activation. The transcription of HvATF1 was found to be constitutive in different tissues, and was little affected by Al stress. Knockdown of HvATF1 by RNAi resulted in increased Al sensitivity. Transcriptomics analysis identified 64 differently expressed genes in the RNAi lines compared to the wild-type, and these were considered as candidate downstream genes regulated by HvATF1. This study provides insights into the different molecular mechanisms of Al tolerance in barley and other plants.


2008 ◽  
Vol 29 (2) ◽  
pp. 425-434 ◽  
Author(s):  
Yoshihide Asano ◽  
Margaret Markiewicz ◽  
Masahide Kubo ◽  
Gabor Szalai ◽  
Dennis K. Watson ◽  
...  

ABSTRACT Biosynthesis of fibrillar collagen in the skin is precisely regulated to maintain proper tissue homeostasis; however, the molecular mechanisms involved in this process remain largely unknown. Transcription factor Fli1 has been shown to repress collagen synthesis in cultured dermal fibroblasts. This study investigated the role of Fli1 in regulation of collagen biosynthesis in mice skin in vivo using mice with the homozygous deletion of the C-terminal transcriptional activation (CTA) domain of the Fli1 gene (Fli1ΔCTA/ΔCTA). Skin analyses of the Fli1 mutant mice revealed a significant upregulation of fibrillar collagen genes at mRNA level, as well as increased collagen content as measured by acetic acid extraction and hydroxyproline assays. In addition, collagen fibrils contained ultrastructural abnormalities including immature thin fibrils and very thick irregularly shaped fibrils, which correlated with the reduced levels of decorin, fibromodulin, and lumican. Fibroblasts cultured from the skin of Fli1ΔCTA/ΔCTA mice maintained elevated synthesis of collagen mRNA and protein. Additional experiments in cultured fibroblasts have revealed that although Fli1 ΔCTA retains the ability to bind to the collagen promoter in vitro and in vivo, it no longer functions as transcriptional repressor. Together, these results establish Fli1 as a key regulator of the collagen homeostasis in the skin in vivo.


Author(s):  
Abigail J. Courtney ◽  
Masayuki Kamei ◽  
Aileen R. Ferraro ◽  
Kexin Gai ◽  
Qun He ◽  
...  

ABSTRACTNeurospora crassa contains a minimal Polycomb repression system, which provides rich opportunities to explore Polycomb-mediated repression across eukaryotes and enables genetic studies that can be difficult in plant and animal systems. Polycomb Repressive Complex 2 is a multi-subunit complex that deposits mono-, di-, and tri-methyl groups on lysine 27 of histone H3, and tri-methyl H3K27 is a molecular marker of transcriptionally repressed facultative heterochromatin. In mouse embryonic stem cells and multiple plant species, H2A.Z has been found to be co-localized with H3K27 methylation. H2A.Z is required for normal H3K27 methylation in these experimental systems, though the regulatory mechanisms are not well understood. We report here that Neurospora crassa mutants lacking H2A.Z or SWR-1, the ATP-dependent histone variant exchanger, exhibit a striking reduction in levels of H3K27 methylation. RNA-sequencing revealed downregulation of eed, encoding a subunit of PRC2, in an hH2Az mutant compared to wild type and overexpression of EED in a ΔhH2Az;Δeed background restored most H3K27 methylation. Reduced eed expression leads to region-specific losses of H3K27 methylation suggesting that EED-dependent mechanisms are critical for normal H3K27 methylation at certain regions in the genome.AUTHOR SUMMARYEukaryotic DNA is packaged with histone proteins to form a DNA-protein complex called chromatin. Inside the nucleus, chromatin can be assembled into a variety of higher-order structures that profoundly impact gene expression. Polycomb Group proteins are important chromatin regulators that control assembly of a highly condensed form of chromatin. The functions of Polycomb Group proteins are critical for maintaining stable gene repression during development of multicellular organisms, and defects in Polycomb proteins are linked to disease. There is significant interest in elucidating the molecular mechanisms that regulate the activities of Polycomb Group proteins and the assembly of transcriptionally repressed chromatin domains. In this study, we used a model fungus to investigate the regulatory relationship between a histone variant, H2A.Z, and a conserved histone modifying enzyme complex, Polycomb Repressive Complex 2 (PRC2). We found that H2A.Z is required for normal expression of a PRC2 component. Mutants that lack H2A.Z have defects in chromatin structure at some parts of the genome, but not others. Identification of PRC2-target domains that are differentially dependent on EED provides insights into the diverse mechanisms that regulate assembly and maintenance of facultative heterochromatin in a simple model system.Data Reference NumbersGSE146611


2020 ◽  
Vol 48 (6) ◽  
pp. 2969-2981 ◽  
Author(s):  
Patrick R Heenan ◽  
Xueyin Wang ◽  
Anne R Gooding ◽  
Thomas R Cech ◽  
Thomas T Perkins

Abstract Polycomb repressive complex 2 (PRC2) is a histone methyltransferase that methylates histone H3 at Lysine 27. PRC2 is critical for epigenetic gene silencing, cellular differentiation and the formation of facultative heterochromatin. It can also promote or inhibit oncogenesis. Despite this importance, the molecular mechanisms by which PRC2 compacts chromatin are relatively understudied. Here, we visualized the binding of PRC2 to naked DNA in liquid at the single-molecule level using atomic force microscopy. Analysis of the resulting images showed PRC2, consisting of five subunits (EZH2, EED, SUZ12, AEBP2 and RBBP4), bound to a 2.5-kb DNA with an apparent dissociation constant ($K_{\rm{D}}^{{\rm{app}}}$) of 150 ± 12 nM. PRC2 did not show sequence-specific binding to a region of high GC content (76%) derived from a CpG island embedded in such a long DNA substrate. At higher concentrations, PRC2 compacted DNA by forming DNA loops typically anchored by two or more PRC2 molecules. Additionally, PRC2 binding led to a 3-fold increase in the local bending of DNA’s helical backbone without evidence of DNA wrapping around the protein. We suggest that the bending and looping of DNA by PRC2, independent of PRC2’s methylation activity, may contribute to heterochromatin formation and therefore epigenetic gene silencing.


2008 ◽  
Vol 295 (1) ◽  
pp. G153-G162 ◽  
Author(s):  
Dharmaraj Chinnappan ◽  
Xiangping Qu ◽  
Dongmei Xiao ◽  
Anita Ratnasari ◽  
H. Christian Weber

Ectopic expression of the gastrin-releasing peptide (GRP) receptor (GRP-R) occurs frequently in human malignancies of the gastrointestinal tract. Owing to paracrine and autocrine interaction with its specific high-affinity ligand GRP, tumor cell proliferation, migration, and invasion might ensue. Here we provide the first insights regarding molecular mechanisms of GRP-R regulation in gastrointestinal cancer cells. We identified by EMSA and chromatin immunoprecipitation assays two cAMP response element (CRE) binding sites that recruited transcription factor CRE binding protein (CREB) to the human GRP-R promoter. Transfection studies with a wild-type human GRP-R promoter reporter and corresponding CRE mutants showed that both CRE sites are critical for basal transcriptional activation in gastrointestinal cancer cells. Forced expression of cAMP-dependent effectors CREB and PKA resulted in robust upregulation of human GRP-R transcriptional activity, and this overexpression strictly required intact wild-type CRE sites. Direct cAMP stimulation with forskolin resulted in enhanced human GRP-R promoter activity only in HuTu-80 cells, but not in Caco-2 cells, coinciding with forskolin-induced CREB phosphorylation occurring only in HuTu-80 but not Caco-2 cells. In summary, CREB is a critical regulator of human GRP-R expression in gastrointestinal cancer and might be activated through different upstream intracellular pathways.


2021 ◽  
Author(s):  
Jay Brown

Control of gene expression is now recognized as a central issue in the field of molecular biology. We now know the sequences of many genomes including that of the human genome, and we know the nature of many pathways involved in control of gene expression. It remains difficult, however, to look at the DNA sequences surrounding a particular gene and tell which methods of regulatory control are in use. I have been pursuing the idea that progress might be made by comparing the regulatory regions of paired gene populations in which one population is strongly expressed and the other weakly. Here I report the results obtained with human genes encoding transcription factors (TF). In this population, broadly expressed genes are strongly expressed while tissue targeted TF expression is suppressed in most tissues. The results demonstrated that the promoter region of broadly expressed TF genes is enriched in binding sites for POLR2A, a component of RNA polymerase II while promoters of tissue targeted genes are enriched in EZH2, a subunit of polycomb repressive complex 2 (PRC2). It was rare to observe promoters with binding sites for both POLR2A and EZH2. The findings are interpreted to indicate that strong expression of broadly expressed TF genes is due to the presence of RNA polymerase II at the promoter while weak expression of tissue targeted promoters results from the presence of PRC2. Finally, transcription factor families were compared in the proportion of broadly expressed and tissue targeted genes they contain. The results demonstrated that most families possess both broadly expressed and tissue targeted members. For instance, this was the case with 16 of 20 TF families examined. The results are interpreted to indicate that while individual TFs such as EZH2 may be specific for broadly expressed or tissue targeted genes, this is not a property of most TF families.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1663
Author(s):  
Thomas Gross ◽  
Annette Becker

Angiosperm flowers are the most complex organs that plants generate, and in their center, the gynoecium forms, assuring sexual reproduction. Gynoecium development requires tight regulation of developmental regulators across time and tissues. How simple on and off regulation of gene expression is achieved in plants was described previously, but molecular mechanisms generating complex expression patterns remain unclear. We use the gynoecium developmental regulator CRABS CLAW (CRC) to study factors contributing to its sophisticated expression pattern. We combine in silico promoter analyses, global TF-DNA interaction screens, and mutant analyses. We find that miRNA action, DNA methylation, and chromatin remodeling do not contribute substantially to CRC regulation. However, 119 TFs, including SEP3, ETT, CAL, FUL, NGA2, and JAG bind to the CRC promoter in yeast. These TFs finetune transcript abundance as homodimers by transcriptional activation. Interestingly, temporal–spatial aspects of expression regulation may be under the control of redundantly acting genes and require higher order complex formation at TF binding sites. Our work shows that endogenous regulation of complex expression pattern requires orchestrated transcription factor action on several conserved promotor sites covering almost 4 kb in length. Our results highlight the utility of comprehensive regulators screens directly linking transcriptional regulators with their targets.


Sign in / Sign up

Export Citation Format

Share Document