scholarly journals Osmosensing Properties of the Histidine Protein Kinase MtrB fromCorynebacterium glutamicum

2007 ◽  
Vol 282 (38) ◽  
pp. 27666-27677 ◽  
Author(s):  
Nina Möker ◽  
Philipp Reihlen ◽  
Reinhard Krämer ◽  
Susanne Morbach

The MtrB-MtrA two component system of Corynebacterium glutamicum was recently shown to be in involved in the osmostress response as well as cell wall metabolism. To address the question of whether the histidine protein kinase MtrB is an osmosensor, the kinase was purified and reconstituted into liposomes in a functionally active form. The activity regulation was investigated by varying systematically physicochemical parameters, which are putative stimuli that could be used by the bacterial cell to detect osmotic conditions. Membrane shrinkage was ruled out as a stimulus for activation of MtrB. Instead, MtrB was shown to be activated upon the addition of various chemical compounds, like sugars, amino acids, and polyethylene glycols. Because of the different chemical nature of the solutes, it seems unlikely that they bind to a specific binding site. Instead, they are proposed to act via a change of the hydration state of the protein shifting MtrB into the active state. For MtrB activation it was essential that these solutes were added at the same side as the cytoplasmic domains of the kinase were located, indicating that hypertonicity is sensed by MtrB via cytoplasmatically located protein domains. This was confirmed by the analysis of two MtrB mutants in which either the large periplasmic loop or the HAMP domain was deleted. These mutants were regulated similar to wild type MtrB. Thus, we postulate that MtrB belongs to a class of histidine protein kinases that sense environmental changes at cytoplasmatic protein domains independently of the periplasmic loop and the cytoplasmic HAMP domain.

2021 ◽  
Vol 22 (8) ◽  
pp. 3932
Author(s):  
Jing Cao ◽  
Qijiang Jin ◽  
Jiaying Kuang ◽  
Yanjie Wang ◽  
Yingchun Xu

The lotus produces flower buds at each node, yet most of them are aborted because of unfavorable environmental changes and the mechanism remains unclear. In this work, we proposed a potential novel pathway for ABA-mediated flower timing control in the lotus, which was explored by combining molecular, genetic, transcriptomic, biochemical, and pharmacologic approaches. We found that the aborting flower buds experienced extensive programmed cell death (PCD). The hormonal changes between the normal and aborting flower buds were dominated by abscisic acid (ABA). Seedlings treated with increasing concentrations of ABA exhibited a differential alleviating effect on flower bud abortion, with a maximal response at 80 μM. Transcriptome analysis further confirmed the changes of ABA content and the occurrence of PCD, and indicated the importance of PCD-related SNF1-related protein kinase 1 (NnSnRK1). The NnSnRK1-silenced lotus seedlings showed stronger flowering ability, with their flower:leaf ratio increased by 40%. When seedlings were treated with ABA, the expression level and protein kinase activity of NnSnRK1 significantly decreased. The phenotype of NnSnRK1-silenced seedlings could also be enhanced by ABA treatment and reversed by tungstate treatment. These results suggested that the decline of ABA content in lotus flower buds released its repression of NnSnRK1, which then initiated flower bud abortion.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1413
Author(s):  
Mariana Lizbeth Rodríguez-López ◽  
José Jaime Martínez-Magaña ◽  
David Ruiz-Ramos ◽  
Ana Rosa García ◽  
Laura Gonzalez ◽  
...  

Binge-eating disorder, recently accepted as a diagnostic category, is differentiated from bulimia nervosa in that the former shows the presence of binge-eating episodes and the absence of compensatory behavior. Epigenetics is a conjunct of mechanisms (like DNA methylation) that regulate gene expression, which are dependent on environmental changes. Analysis of DNA methylation in eating disorders shows that it is reduced. The present study aimed to analyze the genome-wide DNA methylation differences between individuals diagnosed with BED and BN. A total of 46 individuals were analyzed using the Infinium Methylation EPIC array. We found 11 differentially methylated sites between BED- and BN-diagnosed individuals, with genome-wide significance. Most of the associations were found in genes related to metabolic processes (ST3GAL4, PRKAG2, and FRK), which are hypomethylated genes in BED. Cg04781532, located in the body of the PRKAG2 gene (protein kinase AMP-activated non-catalytic subunit gamma 2), was hypomethylated in individuals with BED. Agonists of PRKAG2, which is the subunit of AMPK (AMP-activated protein kinase), are proposed to treat obesity, BED, and BN. The present study contributes important insights into the effect that BED could have on PRKAG2 activation.


2019 ◽  
Vol 166 (4) ◽  
pp. 309-315 ◽  
Author(s):  
Taro Watanabe ◽  
Noriyuki Kioka ◽  
Kazumitsu Ueda ◽  
Michinori Matsuo

Abstract ATP-binding cassette protein G1 (ABCG1) plays an important role in eliminating excess cholesterol from macrophages and in the formation of high-density lipoprotein (HDL), which contributes to the prevention and regression of atherosclerosis. The post-translational regulation of ABCG1 remains elusive, although phosphorylation by protein kinase A destabilizes ABCG1 proteins. We examined the phosphorylation of ABCG1 using HEK293 and Raw264.7 cells. ABCG1 phosphorylation was enhanced by treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) activator. PKC activation by TPA increased ABCG1 protein levels and promoted ABCG1-dependent cholesterol efflux to HDL. This activity was suppressed by Go6976, a PKCα/βI inhibitor, suggesting that PKC activation stabilizes ABCG1. To confirm this, the degradation rate of ABCG1 was analysed; ABCG1 degradation was suppressed upon PKC activation, suggesting that PKC phosphorylation regulates ABCG1 levels. To confirm this involvement, we co-expressed ABCG1 and a constitutively active form of PKCα in HEK cells. ABCG1 was increased upon co-expression. These results suggest that PKC-mediated phosphorylation, probably PKCα, stabilizes ABCG1, consequently increasing ABCG1-mediated cholesterol efflux, by suppressing ABCG1 degradation. PKC activation could thus be a therapeutic target to suppress the development of atherosclerosis.


2005 ◽  
Vol 71 (10) ◽  
pp. 5794-5804 ◽  
Author(s):  
M. Andrea Azcarate-Peril ◽  
Olivia McAuliffe ◽  
Eric Altermann ◽  
Sonja Lick ◽  
W. Michael Russell ◽  
...  

ABSTRACT Two-component regulatory systems are one primary mechanism for environmental sensing and signal transduction. Annotation of the complete genome sequence of the probiotic bacterium Lactobacillus acidophilus NCFM revealed nine two-component regulatory systems. In this study, the histidine protein kinase of a two-component regulatory system (LBA1524HPK-LBA1525RR), similar to the acid-related system lisRK from Listeria monocytogenes (P. D. Cotter et al., J. Bacteriol. 181:6840-6843, 1999), was insertionally inactivated. A whole-genome microarray containing 97.4% of the annotated genes of L. acidophilus was used to compare genome-wide patterns of transcription at various pHs between the control and the histidine protein kinase mutant. The expression pattern of approximately 80 genes was affected by the LBA1524HPK mutation. Putative LBA1525RR target loci included two oligopeptide-transport systems present in the L. acidophilus genome, other components of the proteolytic system, and a LuxS homolog, suspected of participating in synthesis of the AI-2 signaling compound. The mutant exhibited lower tolerance to acid and ethanol in logarithmic-phase cells and poor acidification rates in milk. Supplementation of milk with Casamino Acids essentially restored the acid-producing ability of the mutant, providing additional evidence for a role of this two component system in regulating proteolytic activity in L. acidophilus.


2006 ◽  
Vol 26 (10) ◽  
pp. 3824-3834 ◽  
Author(s):  
Huamin Zhou ◽  
Min Zheng ◽  
Jianming Chen ◽  
Changchuan Xie ◽  
Anand R. Kolatkar ◽  
...  

ABSTRACT Previous studies have revealed that transforming growth factor-β-activated protein kinase 1 (TAB1) interacts with p38α and induces p38α autophosphorylation. Here, we examine the sequence requirements in TAB1 and p38α that drive their interaction. Deletion and point mutations in TAB1 reveal that a proline residue in the C terminus of TAB1 (Pro412) is necessary for its interaction with p38α. Furthermore, a cryptic D-domain-like docking site was identified adjacent to the N terminus of Pro412, putting Pro412 in the φB+3 position of the docking site. Through mutational analysis, we found that the previously identified hydrophobic docking groove in p38α is involved in this interaction, whereas the CD domain and ED domain are not. Furthermore, chimeric analysis with p38β (which does not bind to TAB1) revealed a previously unidentified locus of p38α comprising Thr218 and Ile275 that is essential for specific binding of p38α to TAB1. Converting either of these residues to the corresponding amino acid of p38β abolishes p38α interaction with TAB1. These p38α mutants still can be fully activated by p38α upstream activating kinase mitogen-activated protein kinase kinase 6, but their basal activity and activation in response to some extracellular stimuli are reduced. Adjacent to Thr218 and Ile275 is a site where large conformational changes occur in the presence of docking-site peptides derived from p38α substrates and activators. This suggests that TAB1-induced autophosphorylation of p38α results from conformational changes that are similar but unique to those seen in p38α interactions with its substrates and activating kinases.


2004 ◽  
Vol 72 (10) ◽  
pp. 5662-5667 ◽  
Author(s):  
Nicola J. Mason ◽  
Jim Fiore ◽  
Takashi Kobayashi ◽  
Katherine S. Masek ◽  
Yongwon Choi ◽  
...  

ABSTRACT The production of interleukin-12 (IL-12) is critical to the development of innate and adaptive immune responses required for the control of intracellular pathogens. Many microbial products signal through Toll-like receptors (TLR) and activate NF-κB family members that are required for the production of IL-12. Recent studies suggest that components of the TLR pathway are required for the production of IL-12 in response to the parasite Toxoplasma gondii; however, the production of IL-12 in response to this parasite is independent of NF-κB activation. The adaptor molecule TRAF6 is involved in TLR signaling pathways and associates with serine/threonine kinases involved in the activation of both NF-κB and mitogen-activated protein kinase (MAPK). To elucidate the intracellular signaling pathways involved in the production of IL-12 in response to soluble toxoplasma antigen (STAg), wild-type and TRAF6−/− mice were inoculated with STAg, and the production of IL-12(p40) was determined. TRAF6−/− mice failed to produce IL-12(p40) in response to STAg, and TRAF6−/− macrophages stimulated with STAg also failed to produce IL-12(p40). Studies using Western blot analysis of wild-type and TRAF6−/− macrophages revealed that stimulation with STAg resulted in the rapid TRAF6-dependent phosphorylation of p38 and extracellular signal-related kinase, which differentially regulated the production of IL-12(p40). The studies presented here demonstrate for the first time that the production of IL-12(p40) in response to toxoplasma is dependent upon TRAF6 and p38 MAPK.


2003 ◽  
Vol 69 (10) ◽  
pp. 6114-6120 ◽  
Author(s):  
A. Hülsmann ◽  
T. M. Rosche ◽  
I.-S. Kong ◽  
H. M. Hassan ◽  
D. M. Beam ◽  
...  

ABSTRACT Vibrio vulnificus is an estuarine bacterium capable of causing rapidly fatal infections through both ingestion and wound infection. Like other opportunistic pathogens, V. vulnificus must adapt to potentially stressful environmental changes while living freely in seawater, upon colonization of the oyster gut, and upon infection of such diverse hosts as humans and eels. In order to begin to understand the ability of V. vulnificus to respond to such stresses, we examined the role of the alternate sigma factor RpoS, which is important in stress response and virulence in many pathogens. An rpoS mutant of V. vulnificus strain C7184o was constructed by homologous recombination. The mutant strain exhibited a decreased ability to survive diverse environmental stresses, including exposure to hydrogen peroxide, hyperosmolarity, and acidic conditions. The most striking difference was a high sensitivity of the mutant to hydrogen peroxide. Albuminase, caseinase, and elastase activity were detected in the wild type but not in the mutant strain, and an additional two hydrolytic activities (collagenase and gelatinase) were reduced in the mutant strain compared to the wild type. Additionally, the motility of the rpoS mutant was severely diminished. Overall, these studies suggest that rpoS in V. vulnificus is important for adaptation to environmental changes and may have a role in virulence.


2003 ◽  
Vol 14 (4) ◽  
pp. 1727-1743 ◽  
Author(s):  
Binggang Sun ◽  
Richard A. Firtel

We have identified a gene encoding RGS domain-containing protein kinase (RCK1), a novel regulator of G protein signaling domain-containing protein kinase. RCK1 mutant strains exhibit strong aggregation and chemotaxis defects. rck1 null cells chemotax ∼50% faster than wild-type cells, suggesting RCK1 plays a negative regulatory role in chemotaxis. Consistent with this finding, overexpression of wild-type RCK1 reduces chemotaxis speed by ∼40%. On cAMP stimulation, RCK1 transiently translocates to the membrane/cortex region with membrane localization peaking at ∼10 s, similar to the kinetics of membrane localization of the pleckstrin homology domain-containing proteins CRAC, Akt/PKB, and PhdA. RCK1 kinase activity also increases dramatically. The RCK1 kinase activity does not rapidly adapt, but decreases after the cAMP stimulus is removed. This is particularly novel considering that most other chemoattractant-activated kinases (e.g., Akt/PKB, ERK1, ERK2, and PAKa) rapidly adapt after activation. Using site-directed mutagenesis, we further show that both the RGS and kinase domains are required for RCK1 function and that RCK1 kinase activity is required for the delocalization of RCK1 from the plasma membrane. Genetic evidence suggests RCK1 function lies downstream from Gα2, the heterotrimeric G protein that couples to the cAMP chemoattractant receptors. We suggest that RCK1 might be part of an adaptation pathway that regulates aspects of chemotaxis in Dictyostelium.


Sign in / Sign up

Export Citation Format

Share Document