Development of Fasciola hepatica in the mammalian host.

2021 ◽  
pp. 65-111
Author(s):  
Mark W. Robinson ◽  
Robert E. B. Hanna ◽  
Ian Fairweather

Abstract This book chapter is intended present current understanding of Fasciola anatomy at the ultrastructural level and including organs, parenchyma, muscles, nervous system, cellular skeleton, intestines and excretory system.

Author(s):  
Javier DeFelipe

Cajal’s Neuronal Forest: Science and Art continues the tradition set forth in the 2009 publication Cajal’s Butterflies of the Soul: Science and Art. This new compilation contains a vastly large collection of beautiful figures produced throughout the nineteenth century and the beginning of the twentieth century. These images continue to represent and illustrate characteristic examples of the early days of research in neuroscience. Most scientific figures presented by the neuroanatomists of the time were their own drawings; microphotography was not yet a well-developed technique. Therefore, a successful neuroanatomist required a combination of artistic talent and an ability to interpret microscopic images effectively. The problem was that these illustrations were not necessarily free of technical errors and they may have been subject to the scientists’ own interpretations. Indeed, in some cases, these drawings were considered to be basically artistic interpretations rather than accurate copies of the histological preparations. Furthermore, there are many examples showing that even using the same microscopes and the same techniques, scientists “see” differently through the microscope. As a result, this period of scientific “art” and skepticism represents a fascinating page in the history of neuroscience as it provided the basis of our current understanding of the anatomy of the nervous system.


Author(s):  
Grazia Tagliafierro ◽  
Cristiana Crosa ◽  
Marco Canepa ◽  
Tiziano Zanin

Barnacles are very specialized Crustacea, with strongly reduced head and abdomen. Their nervous system is rather simple: the brain or supra-oesophageal ganglion (SG) is a small bilobed structure and the toracic ganglia are fused into a single ventral mass, the suboesophageal ganglion (VG). Neurosecretion was shown in barnacle nervous system by histochemical methods and numerous putative hormonal substances were extracted and tested. Recently six different types of dense-core granules were visualized in the median ocellar nerve of Balanus hameri and serotonin and FMRF-amide like substances were immunocytochemically detected in the nervous system of Balanus amphitrite. The aim of the present work is to localize and characterize at ultrastructural level, neurosecretory neuron cell bodies in the VG of Balanus amphitrite.Specimens of Balanus amphitrite were collected in the port of Genova. The central nervous system were Karnovsky fixed, osmium postfixed, ethanol dehydrated and Durcupan ACM embedded. Ultrathin sections were stained with uranyl acetate and lead citrate. Ultrastructural observations were made on a Philips M 202 and Zeiss 109 T electron microscopy.


Author(s):  
Giedre Milinkeviciute ◽  
Karina S. Cramer

The auditory brainstem carries out sound localization functions that require an extraordinary degree of precision. While many of the specializations needed for these functions reside in auditory neurons, additional adaptations are made possible by the functions of glial cells. Astrocytes, once thought to have mainly a supporting role in nervous system function, are now known to participate in synaptic function. In the auditory brainstem, they contribute to development of specialized synapses and to mature synaptic function. Oligodendrocytes play critical roles in regulating timing in sound localization circuitry. Microglia enter the central nervous system early in development, and also have important functions in the auditory system’s response to injury. This chapter highlights the unique functions of these non-neuronal cells in the auditory system.


Nanoscale ◽  
2017 ◽  
Vol 9 (42) ◽  
pp. 16281-16292 ◽  
Author(s):  
Tzu-Wei Wang ◽  
Kai-Chieh Chang ◽  
Liang-Hsin Chen ◽  
Shih-Yung Liao ◽  
Chia-Wei Yeh ◽  
...  

Functionalised self-assembling nanopeptide hydrogel mediates angiogenesis and neurogenesis for injured brain tissue regeneration.


The Analyst ◽  
2020 ◽  
Vol 145 (22) ◽  
pp. 7380-7387 ◽  
Author(s):  
Huming Yan ◽  
Fangjun Huo ◽  
Yongkang Yue ◽  
Jianbin Chao ◽  
Caixia Yin

The excellent water solubility of hydrazine (N2H4) allows it to easily invade the human body through the skin and respiratory tract, thereby damaging human organs and the central nervous system.


2022 ◽  
Author(s):  
Emily Robb ◽  
Erin McCammick ◽  
Duncan Wells ◽  
Paul McVeigh ◽  
Erica Gardiner ◽  
...  

Fasciola spp. liver fluke have significant impacts in veterinary and human medicine. The absence of a vaccine and increasing anthelmintic resistance threaten sustainable control and underscore the need for novel flukicides. Functional genomic approaches underpinned by in vitro culture of juvenile Fasciola hepatica facilitate control target validation in the most pathogenic life stage. Comparative transcriptomics of in vitro and in vivo maintained 21 day old F. hepatica finds that 86% of genes are expressed at similar levels across maintenance treatments suggesting commonality in core biological functioning within these juveniles. Phenotypic comparisons revealed higher cell proliferation and growth rates in the in vivo juveniles compared to their in vitro counterparts. These phenotypic differences were consistent with the upregulation of neoblast-like stem cell and cell-cycle associated genes in in vivo maintained worms. The more rapid growth/development of in vivo juveniles was further evidenced by a switch in cathepsin protease expression profiles, dominated by cathepsin B in in vitro juveniles and then by cathepsin L in in vivo juveniles. Coincident with more rapid growth/development was the marked downregulation of both classical and peptidergic neuronal signalling components in in vivo maintained juveniles, supporting a role for the nervous system in regulating liver fluke growth and development. Differences in the miRNA complements of in vivo and in vitro juveniles identified 31 differentially expressed miRNAs, notably fhe-let-7a-5p , fhe-mir-124-3p and, miRNAs predicted to target Wnt-signalling, supporting a key role for miRNAs in driving the growth/developmental differences in the in vitro and in vivo maintained juvenile liver fluke. Widespread differences in the expression of neuronal genes in juvenile fluke grown in vitro and in vivo expose significant interplay between neuronal signalling and the rate of growth/development, encouraging consideration of neuronal targets in efforts to dysregulate growth/development for parasite control.


Author(s):  
Thomas D. Wright ◽  
Jamie Ward

There has been considerable effort devoted towards understanding sensory substitution devices in terms of their relationship to canonical sensory modalities. The approach taken in this essay is rather different, although complementary, in that we seek to define a broad conceptual space of ‘sensory tools’ in which sensory substitution devices can be situated. Such devices range from telescopes, to cochlear implants, to attempts to create a magnetic sense. One feature of these devices is that they operate at the level of ‘raw’ sensory information. As such, systems such as Braille which operate at a symbolic/conceptual level do not count as a sensory tool (or a sensory substitution device) and nor would a device such as CCTV which, although capturing raw sensory information, would not meet a conventional definition of a tool. With this approach, we hope to avoid the circularity inherent in previous attempts at defining sensory substitution and provide a better starting point to explore the effects of sensory tools, more generally, on the functioning of the nervous system.


2021 ◽  
pp. 23-64
Author(s):  
Gilles Dreyfuss ◽  
Philippe Sindou ◽  
Philippe Hourdin ◽  
Philippe Vignoles ◽  
Daniel Rondelaud

Abstract This book chapter focuses on host snail species and larval behavior forms in snails, and features of parasitic infections in naturally or experimentally infected snails, or in coinfected snails.


2021 ◽  
pp. 158-168
Author(s):  
Jeremy K. Cutsforth-Gregory

The autonomic nervous system is involved in many important unconscious body functions. It is critical for maintaining the internal environment in response to changes in the external environment. The autonomic nervous system consists of peripheral components (sympathetic and parasympathetic nerves and ganglia) and central components (ventrolateral medulla, nucleus ambiguus, nucleus of the solitary tract, periaqueductal gray, anterior cingulate gyrus, insular cortex, amygdala, and hypothalamus). This chapter briefly reviews the anatomy and functional components of the autonomic nervous system and several anatomical clinical correlations.


Sign in / Sign up

Export Citation Format

Share Document