scholarly journals The energy cost of standing and lying in adult cattle

1973 ◽  
Vol 30 (2) ◽  
pp. 207-210 ◽  
Author(s):  
J. E. Vercoe

1. Gas exchanges on eleven steers with a mean weight of 273 kg, fasted for 96 h, were obtained over time intervals of 5·76 min in a confinement-type respiration chamber, when the animals were either standing of lying, or engaged in the act of standing or lying.2. In all, 751 observations were analysed and these included twenty-four associated with the act of standing, forty-eight with the act of lying and the remainder approximately equally divided between standing and lying.3. When lying, the heat production was 72·2 kJ (17·2 kcal)/kg fasted weight per 24 h and when standing, 85·7 kJ (20·5 kcal)/kg fasted weight per 24 h; an increase when standing of 18·7%. The double act of standing and lying was associated with an increase in heat production of 11·3 kJ (2·7 kcal)/100 kg fasted weight and while the act of standing was energetically more costly than the act of lying, the difference between the two was not significant.4. The results are discussed in relation to earlier estimates.5. Confinement-type respiration chambers of the type described by Turner & Thornton (1966), which have a fast response time and monitor the changes in chamber air frequently, are ideally suited to the detection of short-term changes in metabolic rate such as occur with changes in posture.

1976 ◽  
Vol 87 (1) ◽  
pp. 85-88 ◽  
Author(s):  
M. Van Kampen

SummaryThe influence of standing, spontaneous activity and eating on heat production was determined.The extra heat production of standing is negatively correlated with the length of standing period. In a short standing period of 30 min the associated activity, pecking against the respirometer wall and fluffing the feathers, was high and the heat production was increased by 25% compared with that during sitting. After standing for 1½ h spontaneous activity was very low and the difference in heat production between the standing and sitting bird was reduced by 9%.During eating the heat production increased by an average of 37% (range 11–68%); this was due mainly to the act of eating per se and not to the work of digestion.The mean energy cost of eating was calculated to be 143 J/kg0·75/min spent eating.


1997 ◽  
Vol 77 (3) ◽  
pp. 417-426 ◽  
Author(s):  
M. Lachia ◽  
J. F. Aguilera ◽  
Late C. Prieto

The energy cost of eating was measured in four goats averaging 38 kg and fitted with rumen cannulas. Heat production (HP) was estimated in each goat over restricted periods of approximately 15 min while standing and eating continuously in a confinement respiration chamber. The animals were given feeds of different nature and physical form ranging from shrubs to concentrates. The energy cost of eating was calculated from the increment in HP above the average HP during the prefeeding period. The energy cost was related to the type and amount of feed consumed and also to the time spent eating. In a parallel experiment, similar amounts of the feeds eaten normally (oral feeding) were introduced into the rumen through a fistula. The increases in HP during and after fistula-feeding were negligible, which indicates that all of the increase in HP during eating is to be attributed to the energy cost of eating per se, mainly to theact of food prehension, mastication and propulsion in the alimentary tract. The rate of ingestion (g DM/min) ranged from 6·3 for fresh cut lucerne (Medicago sativa) to 46-99 for concentrates. The energy cost of eating (J/kg body weight (BW) per g DM) averaged 7·08 for fresh cut lucerne, 9·02 for roughages and 1·55 for concentrates and was 2·24 and 4·75 for pelleted and chopped lucerne hay respectively. When theenergy cost was expressed as a function of time spent eating, it ranged from 45 to 144 J/kg BW per min, depending on the physical form of the feed.


1984 ◽  
Vol 39 (2) ◽  
pp. 283-290 ◽  
Author(s):  
K. J. McCracken ◽  
R. Gray

ABSTRACTIn two separate experiments pigs were weaned at 14 or 28 days and heat production was determined in an open-circuit respiration chamber at temperatures above and below the lower critical temperature (Tcl) at intervals during the post-weaning period.With 14-day weaned pigs the mean 24 h heat production above Tc1 averaged 267, 328, 474 and 554 kJ/h per m2 at 3, 9, 15 and 21 days post weaning respectively. The mean thermal conductance (H/AT, kJ/h per m2 per °ΔT, where H is total heat production, m2 is the surface area calculated as 0·097 M kg0·633 and °Δ is the difference between rectal temperature, taken at 39°, and air temperature) below TC1 was calculated as 20·5, 20·1, 23·1 and 24·2 at 17, 23, 29 and 35 days of age respectively and the corresponding values for Tc1 were 25·9, 23·0, 18·4 and 16·0°C.With 28-day weaned pigs the mean 24 h heat production above Tc1 averaged 280, 361 and 445 kJ/h per m2 at 3, 9 and 15 days post weaning. The calculated values for H/ΔT were 19·7, 20·8 and 21·6 and the corresponding values of Tcl were 24·8, 21·7, and 18·8°C at 31, 37 and 43 days of age respectively.The results are discussed in relation to previous studies on 10-day and 28-day weaned pigs and in relation to the practical implications for pigs weaned into controlled-environment accommodation.


1997 ◽  
Vol 78 (3) ◽  
pp. 397-410 ◽  
Author(s):  
J. Van Milgen ◽  
J. Noblet ◽  
S. Dubois ◽  
J.-F. Bernier

A model is proposed that allows study of the short-term dynamics of gas exchanges (and heat production) in large open-circuit respiration chambers. The model describes changes in [O2] and [CO2] in the respiration chamber by a series of differential equations based on animal metabolism and physical characteristics of gas exchange. The model structure was similar for O2 and CO2, although model parameters differed. A constant level of O2 consumption (and CO2 production) was assumed for resting animals which was different for fed and fasted animals. The adaptation from a fed to a fasting state was described as a first-order process. Physical activity (standing or sitting) was recorded and was included in the model as a constant. Thermic effect of feed comprised the O2 consumption and CO2 production related to several relatively rapidly occurring processes after ingestion of a meal (e.g. ingestion, digestion or absorption). In the model, these processes were pooled into a single phenomenon. Model parameters were obtained statistically by comparing model predictions (based on the numerically integrated differential equations) with the observed [O2] and [CO2]. The model was evaluated by studying gas exchanges in growing pigs that were fasted for 31 h and re-fed a single meal thereafter. The model fitted the data well over the 47 h measurement range. Traditional methods in which heat production is calculated suffer from noisy data when the interval between observations becomes too short. The proposed method circumvents this by modelling the observed concentration of gases in the respiration chamber rather than the calculated heat production.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Zhang ◽  
Yadan Wang ◽  
Weijie Li ◽  
Guizuo Wang

Background: Two previous studies have shown that increased neutrophil to lymphocyte ratio (NLR) is associated with short-term prognosis in patients with acute respiratory distress syndrome (ARDS), but it is usually assessed as a single threshold value at baseline. We investigated the relationship between the baseline and the early change in NLR and 30-day mortality in patients with ARDS to evaluate the prognostic value of NLR baseline and NLR changes during the first 7 days after ICU admission.Methods: This is a retrospective cohort study, with all ARDS patients diagnosed according to the Berlin definition from the Medical Information Mart for Intensive Care III (MIMIC-III) database. We calculated the NLR by dividing the neutrophil count by the lymphocyte count. The multivariable logistic regression analysis was used to investigate the relationship between the baseline NLR and short-term mortality. Then the generalized additive mixed model was used to compare trends in NLR over time among survivors and non-survivors after adjusting for potential confounders.Results: A total of 1164 patients were enrolled in our study. Multivariable logistic regression analysis showed that after adjusting for confounders, elevated baseline NLR was a significant risk factor predicting 30-day mortality (OR 1.02, 95%CI 1.01, 1.03, P = 0.0046) and hospital mortality (OR 1.02, 95%CI 1.01, 1.03, P = 0.0003). The result of the generalized additive mixed model showed that the NLR decreased in the survival group and increased in the non-survival group gradually within 7 days after ICU admission. The difference between the two groups showed a trend of increase gradually and the difference increased by an average of 0.67 daily after adjusting for confounders.Conclusions: We confirmed that there was a positive correlation between baseline NLR and short-term mortality, and we found significant differences in NLR changes over time between the non-survival group and the survival group. The early increase in NLR was associated with short-term mortality in ARDS patients.


1977 ◽  
Vol 38 (3) ◽  
pp. 445-454 ◽  
Author(s):  
P-L. Toutain ◽  
Claire Toutain ◽  
A. J. F. Webster ◽  
J. D. McDonald

1. Changes in energy expenditure associated with sleep and activity, age and fatness were measured in sheep. States of vigilance were defined according to electrophysiological records as awake, drowsy, slow-wave sleep (SWS) and paradoxical sleep (PS; Ruckebusch, 1972). Energy expenditure was determined from respiratory exchange. Three groups, each of four sheep were used; yearlings, old (4-6 years of age) fat and old thin sheep. Body fat content was estimated from deuterium oxide space.2. The amount of time spent by sheep from each group at each state of vigilance was similar, total ‘sleep’ time being 200-250 min/night.3. The absolute decrease in energy expenditure during drowsiness and sleep was similar for all groups of sheep. The difference between SWS and lying awake was 20-27 J/kg body-weight (W)0.75 per min. Heat production was about the same for SWS and PS.4. The energy cost of rumination was about 0.34 kJ/kg W per h.5. The increase in heat production during standing consisted of the energy cost of standing, approximately 0.7 kJ/kg W per h, and the energy cost of changing position, approximately 47 J/kg W.6. The old thin sheep had a slightly higher heat production on a per kg total W0.75 basis than the old fat sheep, but this difference largely disappeared when heat production was related to ‘lean’ W. On average energy expenditure was approximately 25% lower in the old sheep than in the yearling animals. This difference could not be related to difference in activity or in the energy costs of activity per unit of time.


2007 ◽  
Vol 87 (4) ◽  
pp. 571-577 ◽  
Author(s):  
Jean Le Dividich ◽  
Julia Marion ◽  
Françoise Thomas

Twenty-four newborn piglets were used to evaluate the digestibility of sow colostrum and milk and the efficiency of milk utilisation by the piglet. Within a litter, four piglets were allotted to one of the four treatments: killed at birth, or bottle-fed sow colostrum for 30 h and sow milk thereafter at the rate of 100, 200, or 300 g kg-1 d-1. Piglets were killed on day 8. Faeces and urine were daily collected and heat production (HP) was determined by indirect calorimetry on days 6 and 7, each day during three successive periods of 105–110 min. Energy retention (ER) was calculated as the difference between metabolisable energy intake (ME) and HP. ER was also determined over the 8-d period using the comparative slaughter (CS). There was no effect of level of feeding on energy and nitrogen digestibility. Milk energy digestibility and metabolisability (ME/GE × 100) and nitrogen digestibility were 98.2 ± 1.2 (SEM), 96.8 ± 1.4 and 98.3 ± 1.3%, respectively. Corresponding values for colostrum were lower (P < 0.01), averaging 95.2 ± 2.8, 92.6 ± 3.1 and 95.3 ± 2.9%, respectively. Efficiency of using milk ME for ER determined by indirect calorimetry or CS was similar and averaged 0.72 ± 0.02. The energy cost of 1 kJ of protein deposition was 1.77 (± 0.04) kJ (efficiency, 0.56), whereas the energy cost of 1 kJ of fat deposition was not different to 1 kJ. Key words: Piglet, colostrum, milk, energy, nitrogen


1980 ◽  
Vol 43 (2) ◽  
pp. 321-328 ◽  
Author(s):  
K. J. McCracken ◽  
B. J. Caldwell

1. The heat production of groups of pigs, weaned at 10 d of age, was determined in an open-circuit respiration chamber at various ages between 10 and 33 d at temperatures above and below the lower critical temperature (Tcl).2. The heat production was lowest on the second or third day post weaning when pigs were given feed increasing by 25 g/pig per d from day 2. There was a marked diurnal pattern in heat production, the lowest values being recorded between 24.00 and 08.00 h.3. The mean thermal conductance (H/ΔT, kJ/h per m2 per °ΔT, where His total heat production, m2 is the surface area calculated as 0.097 W kg0.633 (Brody, 1945) and °ΔTis the difference between rectal temperature, taken as 39°, and air temperature) below Tcl was calculated as 18.0, 16.9, 18.5 and 21.2 respectively at 10, 17, 24 and 31 d of age. Maximum values of H/ΔT obtained during feeding periods were. on average, 4.5 kJ/h per me per °ΔT higher than the mean values.4. The maximum value for Tcl during the immediate post-weaning period was 25.9°. The mean Tcl at 17, 24 and 31 d were respectively 21.7, 18.4 and 18.6° for pigs fed almost to appetite.


Author(s):  
Galen Strawson

This chapter examines the difference between John Locke's definition of a person [P], considered as a kind of thing, and his definition of a subject of experience of a certain sophisticated sort [S]. It first discusses the equation [P] = [S], where [S] is assumed to be a continuing thing that is able to survive radical change of substantial realization, as well as Locke's position about consciousness in relation to [P]'s identity or existence over time as [S]. It argues that Locke is not guilty of circularity because he is not proposing consciousness as the determinant of [S]'s identity over time, but only of [S]'s moral and legal responsibility over time. Finally, it suggests that the terms “Person” and “Personal identity” pull apart, in Locke's scheme of things, but in a perfectly coherent way.


2020 ◽  
Author(s):  
HARZIKO

Language is a tool used to convey ideas, ideas, feelings, and thoughts to others. Language, which is an arbiter sound symbol system that is used by members of one community to work together, interact, and identify themselves. In other words, language can be a means to convey intent or purpose so that the desired thing is achieved. As a communication tool, language develops over time. Therefore, language will never die if its speakers still care and love for the language comparative linguistics as a study or study of language which includes the comparison of cognate languages or the historical development of a language. This research aims to elucidate the use of Indonesian language at students of Iqra Buru University with Comparative Analysis. The method used in this research is descriptive with a qualitative approach. Data collected by observation, interview, and documentation techniques. Sources of data in this study were 5 speakers 5 speakers language Analyzing the data by means of data selection, data classification, and data presentation. The results of the study stated that there were phonological differences, namely the Jamee vowel system contained / ɛ / and / ɔ /, while the vocal system was / a / and the consonant system was Jamee / ɣ / or / R /, while the language / r /, then the difference pronunciations include single vowels, for example makɛn, bɔRa in Jamee and eating, bara in Language used by iqra Rush university students. Keywords


Sign in / Sign up

Export Citation Format

Share Document