scholarly journals The Impact of Fuelwood Moisture Content on the Emission of Gaseous and Particulate Pollutants from a Wood Stove

Author(s):  
Andrew Price-Allison ◽  
Patrick E Mason ◽  
Jenny M. Jones ◽  
Eric K. Barimah ◽  
Gin Jose ◽  
...  
2021 ◽  
Vol 13 (13) ◽  
pp. 2442
Author(s):  
Jichao Lv ◽  
Rui Zhang ◽  
Jinsheng Tu ◽  
Mingjie Liao ◽  
Jiatai Pang ◽  
...  

There are two problems with using global navigation satellite system-interferometric reflectometry (GNSS-IR) to retrieve the soil moisture content (SMC) from single-satellite data: the difference between the reflection regions, and the difficulty in circumventing the impact of seasonal vegetation growth on reflected microwave signals. This study presents a multivariate adaptive regression spline (MARS) SMC retrieval model based on integrated multi-satellite data on the impact of the vegetation moisture content (VMC). The normalized microwave reflection index (NMRI) calculated with the multipath effect is mapped to the normalized difference vegetation index (NDVI) to estimate and eliminate the impact of VMC. A MARS model for retrieving the SMC from multi-satellite data is established based on the phase shift. To examine its reliability, the MARS model was compared with a multiple linear regression (MLR) model, a backpropagation neural network (BPNN) model, and a support vector regression (SVR) model in terms of the retrieval accuracy with time-series observation data collected at a typical station. The MARS model proposed in this study effectively retrieved the SMC, with a correlation coefficient (R2) of 0.916 and a root-mean-square error (RMSE) of 0.021 cm3/cm3. The elimination of the vegetation impact led to 3.7%, 13.9%, 11.7%, and 16.6% increases in R2 and 31.3%, 79.7%, 49.0%, and 90.5% decreases in the RMSE for the SMC retrieved by the MLR, BPNN, SVR, and MARS model, respectively. The results demonstrated the feasibility of correcting the vegetation changes based on the multipath effect and the reliability of the MARS model in retrieving the SMC.


2021 ◽  
Vol 65 (1) ◽  
pp. 23-30
Author(s):  
Tiago Costa ◽  
Neslihan Akdeniz

HighlightsDesign characteristics for animal mortality compost cover materials were tested.Compressive stress was applied to simulate the effects of the mortalities on cover materials.The highest permeability was measured for sawdust at 25% moisture content.A linear relationship was found between the volumetric flow rate and the power required to aerate the piles.Abstract. Composting is an aerobic process that relies on natural aeration to maintain proper oxygen levels. Air-filled porosity, mechanical strength, and permeability are among the essential parameters used to optimize the process. This study’s objective was to measure the physical parameters and airflow characteristics of three commonly used cover materials at four moisture levels, which could be used in designing actively aerated swine mortality composting systems. A laboratory-scale experiment was conducted to measure pressure drops across the cover materials as a function of the airflow rate and the material’s moisture content. Compressive stress was applied for 48 h to simulate the impact of swine mortalities on the cover materials. The power required to aerate each material was determined as a function of volumetric flow rate and moisture content. As expected, air-filled porosity and permeability decreased with increasing bulk density and moisture content. The highest average permeability values were measured at 25% moisture content and ranged from 66 × 10-4 to 70 × 10-4 mm2, from 161 × 10-4 to 209 × 10-4 mm2, and from 481 × 10-4 to 586 × 10-4 mm2 for woodchips, ground cornstalks, and sawdust, respectively. For the range of airflow rates tested in this study (0.0025 to 0.0050 m3 s-1 m-2), a linear relationship (R2 = 0.975) was found between the volumetric flow rate (m3 s-1) and the power required to aerate the compost pile (W per 100 kg of swine mortality). Keywords: Airflow, Darcy’s law, Livestock, Modeling, Permeability, Pressure drop.


2001 ◽  
Vol 43 (2) ◽  
pp. 291-295 ◽  
Author(s):  
J. Vouillamoz ◽  
M. W. Milke

The effect of compost on phytoremediation of diesel-contaminated soils was investigated using 130 small (200 g) containers in two screening tests. The experiments were conducted in a controlled environment using ryegrass from seed. Containers were destructively sampled at various times and analyzed for plant mass and total petroleum hydrocarbons. The results indicate that the presence of diesel reduces grass growth, and that compost helps reduced the impact of diesel on grass growth. The addition of compost helps increase diesel loss from the soils both with and without grass, though the addition of grass leads to lower diesel levels compared with controls. A second set of experiments indicates that the compost helps in phytoremediation of diesel-contaminated soil independent of the dilution effect that compost addition has. The results indicate that the compost addition allowed diesel loss down to 200 mg TPH/kg even though the compost would be expected to hold the diesel more tightly in the soil/compost mixture. The simplicity of the screening tests led to difficulties in controlling moisture content and germination rates. The conclusion of the research is that the tilling of compost into soils combined with grass seeding appears to be a valuable option for treating petroleum-contaminated soils.


2019 ◽  
Vol 2 (3) ◽  
pp. 7
Author(s):  
Dyah Priandini ◽  
Muhamad Rahmad Suhartanto ◽  
Abdul Qadir

Development of papaya fruit production is influenced by the availability of seed quality. High seed quality is maintained during seed storage. Estimation of vigor in relation to storability can be detected by accelerated aging test. This research aims to develop physicall accelerated aging test by, 1)determine the impact of physical accelerated aging on vigor and viability parameters on papaya seed variety Callina and Sukma, 2) determine the levels of seed moisture content and effective period of physicall accelerated aging to predict vigor of papaya seed. This research was conducted at the Laboratory of Seed Science and Technology and Green House Leuwikopo, Department of Agronomy and Horticulture, IPB in January-May 2016 using a randomized complete block design with three replications. Seeds aged by the aging equipment MPC IPB 77-1 MMM. The results showed that the aging time decreased germination value in papaya seed variety Callina and Sukma with equation y=-0.1389x3+3.3333x2–25.25x+81.5 and y=0.0171x3+0.2028x2-9.9956x+81.095. Effective imbibition is 96 hour with moisture content 63-70% in both varieties. The effective of aging time treatment at 0x4, 1x4, 2x4, 3x4, dan 4x4 minutes.Keywords:imbibition, moisture content, viability, vigor


2017 ◽  
Vol 50 (4) ◽  
pp. 5-16
Author(s):  
F. Shahbazi

AbstractMechanical damage of seeds due to harvest, handling and other process is an important factor that affects the quality and quaintly of seeds. The objective of this research was to determine the effects of moisture content and the impact energy on the breakage susceptibility of vetch seeds. The experiments were conducted at moisture contents of 7.57 to 25% (wet basis) and at the impact energies of 0.1, 0.2 and 0.3 J, using an impact damage assessment device. The results showed that impact energy, moisture content, and the interaction effects of these two variables significantly influenced the percentage breakage in vetch seeds (p<0.01). Increasing the impact energy from 0.1 to 0.3 J caused a significant increase in the mean values of seeds breakage from 41.69 to 78.67%. It was found that the relation between vetch seeds moisture content and seeds breakage was non-linear, and the extent of damaged seeds decreased significantlyas a polynomial (from 92.47 to 33.56%) with increasing moisture (from 7.57 to 17.5%) and reached a minimum at moisture level of about 17.5%. Further increase in seed moisture, however, caused an increase in the amount of seeds breakage. Mathematical relationships composed of seed moisture content and impact energy, were developed for accurately description the percentage breakage of vetch seeds under impact loading. It was found that the models have provided satisfactory results over the whole set of values for the dependent variable.


2017 ◽  
Vol 2 (3) ◽  
pp. 233-243
Author(s):  
Raudhatul Aiyuni ◽  
Heru Prono Widayat ◽  
Syarifah Rohaya

Abstrak. Tujuan penelitian untuk mengetahui pengaruh suhu pengeringan kulit buah naga dan konsentrasi penambahan jahe terhadap teh herbal serta mengetahui tingkat penerimaan konsumen terhadap teh herbal kulit buah naga dan jahe. Penelitian menggunakan Rancangan Acak Kelompok (RAK) Faktorial dengan 2 faktor. Faktor pertama adalah suhu pengeringan (T) yaitu T1 = 50⁰C, T2 = 60⁰C, T3 = 70⁰C. Faktor kedua adalah konsentrasi jahe (J) yaitu J1= 0%, J2= 10%, J3= 14%. Hasil penelitian menunjukkan bahwa suhu pengeringan berpengaruh sangat nyata (P≤0,01) terhadap kadar air, kadar abu, dan nilai organoleptik warna teh herbal kulit buah naga dan jahe yang dihasilkan, dan berpengaruh nyata (P≤0,05) terhadap nilai organoleptik rasa. Konsentrasi jahe (J) berpengaruh sangat nyata (P≤0,01) terhadap nilai organoleptik rasa teh herbal kulit buah naga dan jahe, dan berpengaruh nyata (P≤0,05) terhadap kadar air, dan nilai organoleptik warna. Interaksi suhu pengeringan dengan konsentrasi jahe (T×J) berpengaruh nyata (P≤0,05) terhadap nilai organoleptik rasa teh herbal kulit buah naga dan jahe. Berdasarkan hasil penelitian diperoleh perlakuan terbaik yaitu perlakuan dengan suhu pengeringan 50OC (T1) dan penambahan konsentrasi jahe 14% (J3) memiliki kadar air 10,89%, kadar abu 5,85%, aktivitas antioksidan 59,05% dan total fenol 6,07 mg GAE/g bahan. Utilization Of Waste Dragon Fruit Peel (Hylocereus Costaricensis) In The Production Of Herbal Tea With Additional Ginger Abstract. The purpose of this study was to know the impact of dried temperature and concentration additional of ginger and also to know the level of accept consumen for herbal tea dragon fruit peel and ginger. This study uses a randomized block design (RAK) Faktorial two factors. The first factor is dried temperature (T) that is T1 = 50⁰C, T2 = 60⁰C, T3 = 70⁰C. Factor II is consentration to add ginger (J) that is J1= 0%, J2= 10%, J3= 14%. The result of it showed that dried temperature obviously affected (P ≤ 0.01) on the moisture content, ash content, and sensory evaluation of color herbal tea dragon fruit peel and ginger, and obviously affected (P≤0,05) to the sensory evaluation of taste. While, the ginger consentration obviously affected (P ≤ 0.01) on the sensory evaluation of taste herbal tea dragon fruit peel and ginger, and obviously affected (P≤0,05) on the moisture content, and sensory evaluation of color. The interaction type of dried temperature with the ginger consentration obviously affected (P≤0,05) on the on the sensory evaluation of taste herbal tea dragon fruit peel and ginger. The best treatment is obtained from dried temperature 50°C (T1) and the addition of ginger concentration of 14% (J3) that product moisture content of  10,89%, ash content 5,85%,  antioxidant activity 59,05% and total phenol 6.07 mg GAE / g of material.


Author(s):  
Łukasz Zawadzki ◽  
Marek Bajda

Abstract Soils occurring in the soil “active zone” are in contact with the surface and are directly influenced by external factors (mainly climatic changes) that cause variation in their parameters over time. Dynamic and uncontrolled changes of soil properties e.g. due to rainfall and evapotranspiration processes may affect field test results leading to the misinterpretation of the obtained data. This paper presents investigations on the influence of moisture content changes in sandy soils on CPTU results. For this purpose, a field ground model has been constructed and five CPTU tests with a different moisture content of soil were carried out. During the investigations, the tip resistance (qc), friction on sleeve (fs), and pore water pressure (u2) were measured. Moreover, a TDR probe was applied to determine the distribution of the moisture content in the studied soil columns. Differences between CPT results obtained in saturated and unsaturated soils have been shown. Furthermore, a simple equation to correct the tip resistance value due to the impact of the degree of saturation has been proposed.


2018 ◽  
Vol 69 (3) ◽  
pp. 247-252
Author(s):  
Timuçin Bardak ◽  
Eser Sozen ◽  
Kadir Kayahan ◽  
Selahattin Bardak

Sign in / Sign up

Export Citation Format

Share Document