Hydrogen Permeability of Composite Hydrogen Permeation Membrane Using a Reverse Buildup Method

2013 ◽  
Vol 34 (11-12) ◽  
pp. 917-924 ◽  
Author(s):  
Yukitaka Kato ◽  
Kanta Inoue ◽  
Michito Urasaki ◽  
Satoshi Tanaka ◽  
Hiroaki Ninomiya ◽  
...  
2011 ◽  
Vol 179-180 ◽  
pp. 1309-1313 ◽  
Author(s):  
Xiao Liang Zhang ◽  
Xu Feng Xie ◽  
Yan Huang

Pd-based composite membranes are the attractive membrane materials for hydrogen separation due to their high hydrogen permeability and infinite permselectivity. Thin pure Ni and Pd-Ni alloy membranes with high hydrogen permeation were prepared by the electroless plating method. It is difficult to prepare the dense pure Ni membranes with 1-2 μm thickness for hydrogen separation. However, Pd-Ni alloy membranes with several micrometers thickness showed good permeation performance. Hydrogen permeance of the Pd95Ni5 alloy membrane with fcc phase up to 3.1×10-6 mol/m2 s Pa and the ideal permselectivity over 600 were obtained at 773 K.


2006 ◽  
Vol 980 ◽  
Author(s):  
Kazuhiro Ishikawa ◽  
Naoshi Kasagami ◽  
Tomoyuki Takano ◽  
Kiyoshi Aoki

AbstractIn order to develop non-Pd based high performance hydrogen permeation alloys, microstructure, crystal structure and hydrogen permeability of duplex phase M-ZrNi (M=V and Ta) alloys were investigated using a scanning electron microscope, an X-ray diffractometer and a gas flow meter. These results were compared with those of Nb-ZrNi ones which have been previously published. The hydrogen permeation was impossible in the V-ZrNi alloys, because they were brittle in the as-cast state. On the other hand, duplex phase alloys consisting of the bcc-(Ta, Zr) solid solution and the orthorhombic ZrNi (Cmcm) intermetallic compound were formed and hydrogen permeable in the Ta-ZrNi system. The Ta40Zr30Ni30 alloy shows the highest value of hydrogen permeability of 4.1×10-8 [molH2m-1s-1Pa-0.5] at 673 K, which is three times higher than that of pure Pd.


2007 ◽  
Vol 561-565 ◽  
pp. 467-470
Author(s):  
Yuji Yamaguchi ◽  
Kyosuke Kishida ◽  
Katsushi Tanaka ◽  
Haruyuki Inui ◽  
Sho Tokui ◽  
...  

Nb-NiTi and Nb-CoTi eutectic alloys were directionally solidified in an optical floating zone furnace. Rod-type eutectic structures with Nb rods aligned parallel to the growth direction are obtained for Nb-41Ni-40Ti grown at relatively slow growth rates below 1.0mm/h, while lamellar-type eutectic structures are obtained for Nb-35Co-34Ti grown at the same condition. The hydrogen permeability for the Nb-41Ni-40Ti DS alloy with Nb rods perpendicular to the membrane surface is 2.60×10-8mol H2 m-1 Pa-1/2 at 673K, which is about 2.5 times higher than that of as-cast sample. No hydrogen embrittlement is observed between 573 and 673K, indicating that the Nb-NiTi rod-type eutectic structure effectively suppresses the hydrogen embrittlement of Nb during hydrogen permeation.


2008 ◽  
Vol 368-372 ◽  
pp. 256-258 ◽  
Author(s):  
Shu Min Fang ◽  
Jing Yang ◽  
Chu Shen Chen ◽  
Wei Liu

Ni-BaCe0.9Y0.1O3-δ mixed protonic-electronic conductor can be used to separate hydrogen from syngas. Considering that water exists in syngas, it is necessary to evaluate the effect of moisture on chemical stability and hydrogen permeability of the cermet. In this paper, hydrogen permeation rates of Ni- BaCe0.9Y0.1O3-δ (40:60 in volume ratio) in different water partial pressures were measured at intermediate temperatures (600-750°C). It is found that hydrogen permeation rate of the cermet is highest at an appropriate water partial pressure. Samples after experiment were analyzed by XRD, ICP and pH value measurement, in which Ba(OH)2 and doped CeO2 were found. The reaction of water with samples resulting in insulating Ba(OH)2 and doped CeO2 is contributed to the decrease of hydrogen permeation in excessive water partial pressure.


2014 ◽  
Vol 39 (16) ◽  
pp. 8385-8389 ◽  
Author(s):  
Erhu Yan ◽  
Xinzhong Li ◽  
Dongmei Liu ◽  
Markus Rettenmayr ◽  
Yanqing Su ◽  
...  

CORROSION ◽  
10.5006/3901 ◽  
2022 ◽  
Author(s):  
Taishi Fujishiro ◽  
Takuya Hara ◽  
Kyono Yasuda ◽  
Daisuke Mizuno ◽  
Nobuyuki Ishikawa ◽  
...  

The severity of sour environments has been determined in accordance with the European Federation of Corrosion 16 and NACE MR0175/ISO 15156-2:2015 standards for carbon and low-alloy steels, based on the experimental results of sulfide stress cracking (SSC). However, the severity map obtained from SSC test results cannot be applicable to the hydrogen-induced cracking (HIC) susceptibility. In this study, the hydrogen permeability and crack area ratio (CAR) of HIC under various pH and H2S partial pressures (pH2S) were measured to establish the link between the sour environmental severity and HIC susceptibility using grades X65 to X80 linepipe steels. In addition, the hydrogen concentration at the location of the HIC was calculated by the finite element analysis. The results showed that the sour environmental severity map obtained from hydrogen permeation tests changes with time, because the hydrogen permeability reached maximum values in the early stage and steady-state values in the later stage. Then, the HIC susceptibility did not correspond to the maximum permeability, but to the steady-state hydrogen permeability. In addition, the hydrogen content at the location of the HIC did not correspond to the maximum hydrogen permeability but corresponded to the steady-state hydrogen permeability, because HIC occurred in the center segregation part and the hydrogen atoms required a certain time to diffuse from the metal surface to the mid-thickness. These results suggest that the HIC susceptibility is dominated by the severity map obtained from the steady-state hydrogen permeability.


2011 ◽  
Vol 695 ◽  
pp. 251-254 ◽  
Author(s):  
Saet Byol Rim ◽  
Kyeong Il Kim ◽  
Tae Whan Hong ◽  
Mie Won Jung

The Al2O3-CuO-ZnO (ACZ) was synthesized from sol-gel process with aluminum isopropoxide, copper (II) nitrate hemi pentahydrate, Zn (II) nitrate hexahydrate and primary distilled water. The ACZ synthesized powders were analyzed by TG/DTA, XRD, BET and FE-SEM. The ACZ-Co composites membrane was prepared by hot press sintering (HPS). Hydrogen permeability was characterized by Sievert's type hydrogen permeation membrane equipment. The hydrogen permeation rate was measured 0.0496 mol m-2 s-1 at room temperature under 2 bar of H2 atmosphere.


2010 ◽  
Vol 297-301 ◽  
pp. 549-554
Author(s):  
Kyeong Il Kim ◽  
Sang Hern Kim ◽  
Whan Gi Kim ◽  
Soon Chul Ur ◽  
Tae Whan Hong

Nowadays, the most promising methods for high purity hydrogen production are membranes separation such as polymer, metal, ceramic and composites. It is well known that Pd and Pd-alloys membranes have excellent properties for hydrogen separation. However, it has hydrogen embrittlement and high cost for practical applications. Therefore, most scientists have studied new materials instead of Pd and Pd-alloys. On the other hand, TiN powders are great in resistance to acids and chemically stable under high operating temperature. In order to get specimens for hydrogen permeation, the TiN powders synthesized were consolidated together with pure Co powders by hot press sintering. During the consolidation of powders at HPS, heating rate was 10K/min and the pressure was 10MPa. It was characterized by XRD, SEM, and BET. Also, we estimated the hydrogen permeability by Sievert's type hydrogen permeation membrane equipment.


2012 ◽  
Vol 724 ◽  
pp. 213-216 ◽  
Author(s):  
Bo Young Shon ◽  
Mie Won Jung

NiO-doped Al2O3was synthesized with 20 wt% of nickel nitrate using the sol-gel process. P123 as an organic additive added to increase surface area of powder. The phase transformation, thermal evolution and surface morphology of the powder were characterized by XRD, TG-DTA and FE-SEM. The 20 wt% NiO-doped Al2O3/10 wt% Ni composite membrane was prepared by hot press sintering (HPS) following with a mechanical alloying process. Hydrogen permeation flux for 20 wt% NiO-doped Al2O3/10 wt% Ni membrane was obtained as 0.1 mol/m2s at 673K.


2004 ◽  
Vol 835 ◽  
Author(s):  
S.-J. Song ◽  
T. H. Lee ◽  
L. Chen ◽  
C. Zuo ◽  
S. E. Dorris ◽  
...  

AbstractResearch on hydrogen separation membranes is motivated by the increasing demand for an environmentally benign, inexpensive technology for separating hydrogen from gas mixtures. Although most studies of hydrogen separation membranes have focused on proton-conducting oxides by themselves, the addition of metal to these oxides increases their hydrogen permeability and improves their mechanical stability. This study began by determining the electrical and hydrogen permeation properties of SrCe0.8Yb0.2O3−δ (SCYb). The results showed that the hydrogen permeation rate is limited by electron flow at the investigated temperatures (600 – 900°C). To further enhance hydrogen permeability, a cermet (i.e., ceramic-metal composite) membrane was made by adding Ni to the SCYb. The cermet showed no phase change after sintering in a reducing atmosphere. At 900°C, with 20% H2 /balance He as a feed gas (pH2O = 0.03 atm), the hydrogen permeation rate was 0.113 cm3/min-cm2 for Ni/SCYb (0.43-mm thick) and 0.008 cm3/min-cm2 for SCYb (0.7-mm thick). The dependences of hydrogen permeability on temperature, thickness, and hydrogen partial pressure gradients are also determined. The results demonstrate that adding Ni to SCYb considerably increases its hydrogen permeability by increasing its electron conductivity.


Sign in / Sign up

Export Citation Format

Share Document