Fluted pumpkin seeds protect against busulfan-induced oxidative stress and testicular injuries in adult mice

2019 ◽  
pp. 1-11 ◽  
Author(s):  
S. O. Abarikwu ◽  
C. J. Mgbudom-Okah ◽  
C. L. Onuah ◽  
A. Ogunlaja
2021 ◽  
Vol 22 (11) ◽  
pp. 5995
Author(s):  
Chand Basha Davuljigari ◽  
Frederick Adams Ekuban ◽  
Cai Zong ◽  
Alzahraa A. M. Fergany ◽  
Kota Morikawa ◽  
...  

Acrylamide is a well characterized neurotoxicant known to cause neuropathy and encephalopathy in humans and experimental animals. To investigate the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in acrylamide-induced neuropathy, male C57Bl/6JJcl adult mice were exposed to acrylamide at 0, 200 or 300 ppm in drinking water and co-administered with subcutaneous injections of sulforaphane, a known activator of the Nrf2 signaling pathway at 0 or 25 mg/kg body weight daily for 4 weeks. Assessments for neurotoxicity, hepatotoxicity, oxidative stress as well as messenger RNA-expression analysis for Nrf2-antioxidant and pro-inflammatory cytokine genes were conducted. Relative to mice exposed only to acrylamide, co-administration of sulforaphane protected against acrylamide-induced neurotoxic effects such as increase in landing foot spread or decrease in density of noradrenergic axons as well as hepatic necrosis and hemorrhage. Moreover, co-administration of sulforaphane enhanced acrylamide-induced mRNA upregulation of Nrf2 and its downstream antioxidant proteins and suppressed acrylamide-induced mRNA upregulation of tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase (iNOS) in the cerebral cortex. The results demonstrate that activation of the Nrf2 signaling pathway by co-treatment of sulforaphane provides protection against acrylamide-induced neurotoxicity through suppression of oxidative stress and inflammation. Nrf2 remains an important target for the strategic prevention of acrylamide-induced neurotoxicity.


2015 ◽  
Vol 50 ◽  
pp. 170-178 ◽  
Author(s):  
Meg Kirkpatrick ◽  
Janina Benoit ◽  
Wyll Everett ◽  
Jennifer Gibson ◽  
Michael Rist ◽  
...  

2019 ◽  
Vol 35 (1) ◽  
Author(s):  
Ju-Bin Kang ◽  
Dong-Ju Park ◽  
Murad-Ali Shah ◽  
Myeong-Ok Kim ◽  
Phil-Ok Koh

Abstract Lipopolysaccharide (LPS) acts as an endotoxin, releases inflammatory cytokines, and promotes an inflammatory response in various tissues. This study investigated whether LPS modulates neuroglia activation and nuclear factor kappa B (NF-κB)-mediated inflammatory factors in the cerebral cortex. Adult male mice were divided into control animals and LPS-treated animals. The mice received LPS (250 μg/kg) or vehicle via an intraperitoneal injection for 5 days. We confirmed a reduction of body weight in LPS-treated animals and observed severe histopathological changes in the cerebral cortex. Moreover, we elucidated increases of reactive oxygen species and oxidative stress levels in LPS-treated animals. LPS administration led to increases of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) expression. Iba-1 and GFAP are well accepted as markers of activated microglia and astrocytes, respectively. Moreover, LPS exposure induced increases of NF-κB and pro-inflammatory factors, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Increases of these inflammatory mediators by LPS exposure indicate that LPS leads to inflammatory responses and tissue damage. These results demonstrated that LPS activates neuroglial cells and increases NF-κB-mediated inflammatory factors in the cerebral cortex. Thus, these findings suggest that LPS induces neurotoxicity by increasing oxidative stress and activating neuroglia and inflammatory factors in the cerebral cortex.


2020 ◽  
Vol 27 (8) ◽  
pp. 8091-8102 ◽  
Author(s):  
Mediha Sefi ◽  
Mariem Chaâbane ◽  
Awatef Elwej ◽  
Safa Bejaoui ◽  
Rim Marrekchi ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Natalie Baruch-Eliyahu ◽  
Vladislav Rud ◽  
Alex Braiman ◽  
Esther Priel

AbstractThe telomerase reverse transcriptase protein, TERT, is expressed in the adult brain and its exogenic expression protects neurons from oxidative stress and from the cytotoxicity of amyloid beta (Aβ). We previously showed that telomerase increasing compounds (AGS) protected neurons from oxidative stress. Therefore, we suggest that increasing TERT by AGS may protect neurons from the Aβ-induced neurotoxicity by influencing genes and factors that participate in neuronal survival and plasticity. Here we used a primary hippocampal cell culture exposed to aggregated Aβ and hippocampi from adult mice. AGS treatment transiently increased TERT gene expression in hippocampal primary cell cultures in the presence or absence of Aβ and protected neurons from Aβ induced neuronal degradation. An increase in the expression of Growth associated protein 43 (GAP43), and Feminizing locus on X-3 genes (NeuN), in the presence or absence of Aβ, and Synaptophysin (SYP) in the presence of Aβ was observed. GAP43, NeuN, SYP, Neurotrophic factors (NGF, BDNF), beta-catenin and cyclin-D1 expression were increased in the hippocampus of AGS treated mice. This data suggests that increasing TERT by pharmaceutical compounds partially exerts its neuroprotective effect by enhancing the expression of neurotrophic factors and neuronal plasticity genes in a mechanism that involved Wnt/beta-catenin pathway.


2011 ◽  
Vol 121 (10) ◽  
pp. 427-436 ◽  
Author(s):  
Robert D. Roghair ◽  
John A. Wemmie ◽  
Kenneth A. Volk ◽  
Thomas D. Scholz ◽  
Fred S. Lamb ◽  
...  

Intra-uterine growth restriction is an independent risk factor for adult psychiatric and cardiovascular diseases. In humans, intra-uterine growth restriction is associated with increased placental and fetal oxidative stress, as well as down-regulation of placental 11β-HSD (11β-hydroxysteroid dehydrogenase). Decreased placental 11β-HSD activity increases fetal exposure to maternal glucocorticoids, further increasing fetal oxidative stress. To explore the developmental origins of co-morbid hypertension and anxiety disorders, we increased fetal glucocorticoid exposure by administering the 11β-HSD inhibitor CBX (carbenoxolone; 12 mg·kg−1 of body weight·day−1) during the final week of murine gestation. We hypothesized that maternal antioxidant (tempol throughout pregnancy) would block glucocorticoid-programmed anxiety, vascular dysfunction and hypertension. Anxiety-related behaviour (conditioned fear) and the haemodynamic response to stress were measured in adult mice. Maternal CBX administration significantly increased conditioned fear responses of adult females. Among the offspring of CBX-injected dams, maternal tempol markedly attenuated the behavioural and cardiovascular responses to psychological stress. Compared with offspring of undisturbed dams, male offspring of dams that received daily third trimester saline injections had increased stress-evoked pressure responses that were blocked by maternal tempol. In contrast, tempol did not block CBX-induced aortic dysfunction in female mice (measured by myography and lucigenin-enhanced chemiluminescence). We conclude that maternal stress and exaggerated fetal glucocorticoid exposure enhance sex-specific stress responses, as well as alterations in aortic reactivity. Because concurrent tempol attenuated conditioned fear and stress reactivity even among the offspring of saline-injected dams, we speculate that antenatal stressors programme offspring stress reactivity in a cycle that may be broken by antenatal antioxidant therapy.


2021 ◽  
Author(s):  
Shi-Wei Li ◽  
Ming-Hui Chang ◽  
Wen-Jun Zhao ◽  
He-Lian Li ◽  
Hong-Jie Sun ◽  
...  

Abstract 2,6-dichlorobenzoquinone (2,6-DCBQ) is an emerging disinfection byproduct frequently detected in drinking water. Previous studies have indicated that 2,6-DCBQ causes oxidative stress damage in some live systems, but this has yet to be tested in vivo in mammals. In the present study, adult mice were exposed to 2,6-DCBQ for 30 d via gavage at 0 ~ 100 mg kg− 1 with the responses of antioxidant enzymes (superoxide dismutase [SOD] and catalase [CAT]), key oxidative stress response genes (Heme oxygenase-1 [HO-1], NADPH quinone oxidoreductase 1 [NQO1] and glutamate-L-cysteine ligase catalytic subunit [GCLC]) in the Nrf2-keap1 pathway, and lipid peroxidation (malonaldehyde, MDA) as an indicator of oxidative damage being measured. Our results indicated that 2,6-DCBQ decreased the activities of SOD and CAT, repressed transcription of key genes in the Nrf2-keap1 pathway, and caused measurable oxidative damage. These results reveal the impact of 2,6-DCBQ in a model mammalian system and are key to understanding the potential impacts of 2,6-DCBQ in humans.


Biomedicines ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 380 ◽  
Author(s):  
Riaz Ahmad ◽  
Amjad Khan ◽  
Hyeon Jin Lee ◽  
Inayat Ur Rehman ◽  
Ibrahim Khan ◽  
...  

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that represents 60–70% of all dementia cases. AD is characterized by the formation and accumulation of amyloid-beta (Aβ) plaques, neurofibrillary tangles, and neuronal cell loss. Further accumulation of Aβ in the brain induces oxidative stress, neuroinflammation, and synaptic and memory dysfunction. In this study, we investigated the antioxidant and neuroprotective effects of the natural triterpenoid lupeol in the Aβ1–42 mouse model of AD. An Intracerebroventricular injection (i.c.v.) of Aβ (3 µL/5 min/mouse) into the brain of a mouse increased the reactive oxygen species (ROS) levels, neuroinflammation, and memory and cognitive dysfunction. The oral administration of lupeol at a dose of 50 mg/kg for two weeks significantly decreased the oxidative stress, neuroinflammation, and memory impairments. Lupeol decreased the oxidative stress via the activation of nuclear factor erythroid 2-related factor-2 (Nrf-2) and heme oxygenase-1 (HO-1) in the brain of adult mice. Moreover, lupeol treatment prevented neuroinflammation by suppressing activated glial cells and inflammatory mediators. Additionally, lupeol treatment significantly decreased the accumulation of Aβ and beta-secretase-1 (BACE-1) expression and enhanced the memory and cognitive function in the Aβ-mouse model of AD. To the best of our knowledge, this is the first study to investigate the anti-oxidative and neuroprotective effects of lupeol against Aβ1–42-induced neurotoxicity. Our findings suggest that lupeol could serve as a novel, promising, and accessible neuroprotective agent against progressive neurodegenerative diseases such as AD.


Sign in / Sign up

Export Citation Format

Share Document