The effects of methylmercury exposure on behavior and biomarkers of oxidative stress in adult mice

2015 ◽  
Vol 50 ◽  
pp. 170-178 ◽  
Author(s):  
Meg Kirkpatrick ◽  
Janina Benoit ◽  
Wyll Everett ◽  
Jennifer Gibson ◽  
Michael Rist ◽  
...  
2021 ◽  
Vol 22 (11) ◽  
pp. 5995
Author(s):  
Chand Basha Davuljigari ◽  
Frederick Adams Ekuban ◽  
Cai Zong ◽  
Alzahraa A. M. Fergany ◽  
Kota Morikawa ◽  
...  

Acrylamide is a well characterized neurotoxicant known to cause neuropathy and encephalopathy in humans and experimental animals. To investigate the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in acrylamide-induced neuropathy, male C57Bl/6JJcl adult mice were exposed to acrylamide at 0, 200 or 300 ppm in drinking water and co-administered with subcutaneous injections of sulforaphane, a known activator of the Nrf2 signaling pathway at 0 or 25 mg/kg body weight daily for 4 weeks. Assessments for neurotoxicity, hepatotoxicity, oxidative stress as well as messenger RNA-expression analysis for Nrf2-antioxidant and pro-inflammatory cytokine genes were conducted. Relative to mice exposed only to acrylamide, co-administration of sulforaphane protected against acrylamide-induced neurotoxic effects such as increase in landing foot spread or decrease in density of noradrenergic axons as well as hepatic necrosis and hemorrhage. Moreover, co-administration of sulforaphane enhanced acrylamide-induced mRNA upregulation of Nrf2 and its downstream antioxidant proteins and suppressed acrylamide-induced mRNA upregulation of tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase (iNOS) in the cerebral cortex. The results demonstrate that activation of the Nrf2 signaling pathway by co-treatment of sulforaphane provides protection against acrylamide-induced neurotoxicity through suppression of oxidative stress and inflammation. Nrf2 remains an important target for the strategic prevention of acrylamide-induced neurotoxicity.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 145
Author(s):  
Ashley K. Putman ◽  
G. Andres Contreras ◽  
Lorraine M. Sordillo

Oxidative stress has been associated with many pathologies, in both human and animal medicine. Damage to tissue components such as lipids is a defining feature of oxidative stress and can lead to the generation of many oxidized products, including isoprostanes (IsoP). First recognized in the early 1990s, IsoP are formed in numerous biological fluids and tissues, chemically stable, and easily measured by noninvasive means. Additionally, IsoP are highly specific indicators of lipid peroxidation and thereby are regarded as excellent biomarkers of oxidative stress. Although there have been many advancements in the detection and use of IsoP as a biomarker, there is still a paucity of knowledge regarding the biological activity of these molecules and their potential roles in pathology of oxidative stress. Furthermore, the use of IsoP has been limited in veterinary species thus far and represents an avenue of opportunity for clinical applications in veterinary practice. Examples of clinical applications of IsoP in veterinary medicine include use as a novel biomarker to guide treatment recommendations or as a target to mitigate inflammatory processes. This review will discuss the history, biosynthesis, measurement, use as a biomarker, and biological action of IsoP, particularly in the context of veterinary medicine.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 682 ◽  
Author(s):  
Julia Lorenzon dos Santos ◽  
Alexandre Schaan de Quadros ◽  
Camila Weschenfelder ◽  
Silvia Bueno Garofallo ◽  
Aline Marcadenti

Atherosclerosis is related to fat accumulation in the arterial walls and vascular stiffening, and results in acute coronary syndrome which is commonly associated with acute myocardial infarction. Oxidative stress participates in the pathogenesis of atherosclerosis. Thus, the inclusion of food sources of dietary antioxidants, such as different kinds of nuts, may improve biomarkers related to oxidative stress, contributing to a possible reduction in atherosclerosis progression. This article has briefly highlighted the interaction between oxidative stress, atherosclerosis, and cardiovascular disease, in addition to the effect of the consumption of different nuts and related dietary antioxidants—like polyphenols and vitamin E—on biomarkers of oxidative stress in primary and secondary cardiovascular prevention. Studies in vitro suggest that nuts may exert antioxidant effects by DNA repair mechanisms, lipid peroxidation prevention, modulation of the signaling pathways, and inhibition of the MAPK pathways through the suppression of NF-κB and activation of the Nrf2 pathways. Studies conducted in animal models showed the ability of dietary nuts in improving biomarkers of oxidative stress, such as oxLDL and GPx. However, clinical trials in humans have not been conclusive, especially with regards to the secondary prevention of cardiovascular disease.


2015 ◽  
Vol 81 ◽  
pp. 100-106 ◽  
Author(s):  
Maria B. Kadiiska ◽  
Shyamal Peddada ◽  
Ronald A. Herbert ◽  
Samar Basu ◽  
Kenneth Hensley ◽  
...  

2007 ◽  
Vol 76 (2) ◽  
pp. 73-85 ◽  
Author(s):  
J. Young ◽  
S.B. McKinney ◽  
B.M. Ross ◽  
K.W.J. Wahle ◽  
S.P. Boyle

Toxics ◽  
2016 ◽  
Vol 4 (1) ◽  
pp. 7 ◽  
Author(s):  
Nina Holland ◽  
Karen Huen ◽  
Vy Tran ◽  
Kelly Street ◽  
Brian Nguyen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document