Sustainable reduction of Cr (VI) and its elemental mapping on chitosan coated citrus limetta peels biomass in synthetic wastewater

Author(s):  
Veer Singh ◽  
Vishal Mishra
Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
J. S. Park ◽  
B. N. Juterbock

The electric and thermal properties of the resistor material in an automotive spark plug should be stable during its service lifetime. Containing many elements and many phases, this material has a very complex microstructure. Elemental mapping with an electron microprobe can reveal the distribution of all relevant elements throughout the sample. In this work, it is demonstrated that the charge-up effect, which would distort an electron image and, therefore, is normally to be avoided in an electron imaging work, could be used to advantage to reveal conductive and resistive zones in a sample. Its combination with elemental mapping can provide valuable insight into the underlying conductivity mechanism of the resistor.This work was performed in a CAMECA SX-50 microprobe. The spark plug used in the present report was a commercial product taken from the shelf. It was sectioned to expose the cross section of the resistor. The resistor was known not to contain the precious metal Au as checked on the carbon coated sample. The sample was then stripped of carbon coating and re-coated with Au.


Author(s):  
J. Bentley ◽  
E. A. Kenik ◽  
K. Siangchaew ◽  
M. Libera

Quantitative elemental mapping by inner shell core-loss energy-filtered transmission electron microscopy (TEM) with a Gatan Imaging Filter (GIF) interfaced to a Philips CM30 TEM operated with a LaB6 filament at 300 kV has been applied to interfaces in a range of materials. Typically, 15s exposures, slit width Δ = 30 eV, TEM magnifications ∼2000 to 5000×, and probe currents ≥200 nA, were used. Net core-loss maps were produced by AE−r background extrapolation from two pre-edge windows. Zero-loss I0 (Δ ≈ 5 eV) and “total” intensity IT (unfiltered, no slit) images were used to produce maps of t/λ = ln(IT/I0), where λ is the total inelastic mean free path. Core-loss images were corrected for diffraction contrast by normalization with low-loss images recorded with the same slit width, and for changes in thickness by normalization with t/λ, maps. Such corrected images have intensities proportional to the concentration in atoms per unit volume. Jump-ratio images (post-edge divided by pre-edge) were also produced. Spectrum lines across planar interfaces were recorded with TEM illumination by operating the GIF in the spectroscopy mode with an area-selecting slit oriented normal to the energy-dispersion direction. Planar interfaces were oriented normal to the area-selecting slit with a specimen rotation holder.


2016 ◽  
Vol 14 (3) ◽  
pp. 557-561
Author(s):  
Nguyễn Thị Yên ◽  
Kiều Thị Quỳnh Hoa

Lead contaminated wastewater negatively impacts to living organisms as well as humans. In recent years, a highly promising biological process using the anaerobic production of sulfide ions by sulfate-reducing bacteria has presented itself as an alternative option for the removal of lead. This process is based on microbial utilization of electron donors, such as organic compounds (carbon sources), and sulfate as the terminal electron acceptor for sulfide production. The biogenic hydrogen sulfide reacts with dissolved heavy metals to form insoluble metal sulfide precipitates Removal of lead by an enriched consortium of sulfate-reducing bacteria (DM10) was evaluated sulfate reduction, sulfide production and lead precipitation. Four parallel anaerobic continuous stirred tank reactors (CSTR, V = 2L) (referred as R1 - R4) were fed with synthetic wastewater containing Pb2+ in the concentrations of 0, 100, 150 and 200 mg L-1 of lead and operated with a hydraulic retention time of 5 days for 40 days. The loading rates of each metal in R1- R4 were 0, 20, 30 and 40 mg L-1 d-1, respectively. The results showed that there was no inhibition of SRB growth and that lead removal efficiencies of 99-100% for Pb2+ were achieved in R2 (100 mg L-1) and R3 (150 mg L-1) throughout the experiment. For the highest lead concentration of  200 mg L-1, a decrease in efficiency of removal (from 100 to 96%) was observed at the end of the experiment. The obtained result of this study might help for a better control operation and performance improvements of reactors.


2015 ◽  
Vol 14 (3) ◽  
pp. 681-688
Author(s):  
Milan Sak-Bosnar ◽  
Natalija Velic ◽  
Olivera Galovic ◽  
Tonci Rezic ◽  
Bozidar Santek ◽  
...  
Keyword(s):  

2013 ◽  
Vol 12 (12) ◽  
pp. 2371-2383
Author(s):  
Krishnaswamy Usharani ◽  
Perumalsamy Lakshmanaperumalsamy ◽  
Muthusamy Muthukumar

2010 ◽  
Vol 5 (3) ◽  
Author(s):  
Cheng-Nan Chang ◽  
Li-Ling Lee ◽  
Han-Hsien Huang ◽  
Ying-Chih Chiu

The performance of a real-time controlled Sequencing Batch Membrane Bioreactor (SBMBR) for removing organic matter and nitrogen from synthetic wastewater has been investigated in this study under two specific ammonia loadings of 0.0086 and 0.0045g NH4+-N gVSS−1 day−1. Laboratory results indicate that both COD and DOC removal are greater than 97.5% (w/w) but the major benefit of using membrane for solid-liquid separation is that the effluent can be decanted through the membrane while aeration is continued during the draw stage. With a continued aeration, the sludge cake layer is prevented from forming thus alleviating the membrane clogging problem in addition to significant nitrification activities observed in the draw stage. With adequate aeration in the oxic stage, the nitrogen removal efficiency exceeding 99% can be achieved with the SBMBR system. Furthermore, the SBMBR system has also been used to study the occurrence of ammonia valley and nitrate knee that can be used for real-time control of the biological process. Under appropriate ammonia loading rates, applicable ammonia valley and nitrate knee are detected. The real-time control of the SBMBR can be performed based on on-line ORP and pH measurements.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 153-160 ◽  
Author(s):  
Pradeep Kumar ◽  
R. J. Garde

With increasing stress on existing wastewater treatment systems, it is necessary either to upgrade the treatment unit(s) or install an entirely new treatment plant. Obviously, the upgrading is preferred over the alternative of having a new system. Keeping this in view, in the present project, an attempt has been made to explore the possibility of upgrading existing facultative ponds using water hyacinth. Bench-scale batch studies were designed to compare the performance of hyacinth treatment system with facultative ponds. Investigations were carried out with synthetic wastewater having COD in the range of 32.5-1090 mg/l. The efficiency of COD removal in water hyacinth ponds was 15-20 percent more than the facultative ponds. Based on the results, an empirical model has been proposed for COD removal kinetics. In the second phase of the project a hyacinth pond was continuously operated. BOD, COD, TS, TN, TP, pH, and DO were regularly monitored. However, the DO of the effluent from hyacinth treatment system was considerably reduced. Effluent should be aerated before it is discharged. The results indicate that the existing facultative ponds can be stalked with water hyacinth to improve their performance as well as hyacinth treatment systems can be installed to support the conventional treatment.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 153-160 ◽  
Author(s):  
T. Okubo ◽  
M. Okada ◽  
A. Murakami ◽  
Y. Inamori

Effects of daily variation of flow on the performance of submerged anaerobic/aerobic biofilm systems were investigated both by laboratory study using synthetic wastewater and by field study using gray water. In laboratory study, concentration of dissolved organic carbon (DOC) in effluent from anaerobic filter fluctuated with daily variation of flow when average hydraulic retention time (HRT) was below 10 h. However, daily mean values of DOC under the varied flow was almost the same as those under constant flow within the same daily mean HRT. Aerobic filter linked to anaerobic filter reduced the concentration of DOC satisfactorily though the concentration in anaerobic filter increased under short HRT. In field study, percent removal of organic carbon by anaerobic filter was considerably smaller (20-30%) than that in laboratory study (90-95%) both at HRT of 20 h though it was improved up to 60-80% by aerobic filter. Effects of peaking factor of flow on the variation of DOC were evaluated by mathematical analysis. It seemed that the peaking factor hardly affected daily mean values of DOC within the same daily mean HRT though maximum values of DOC increased with the increase of peaking factor.


1995 ◽  
Vol 32 (8) ◽  
pp. 67-74 ◽  
Author(s):  
Satoshi Okabe ◽  
Kikuko Hirata ◽  
Yoshimasa Watanabe

Dynamic changes in spatial microbial distribution in mixed-population biofilms were experimentally determined using a microslicer technique and simulated by a biofilm accumulation model (BAM). Experimental results were compared with the model simulation. The biofilms cultured in partially submerged rotating biological contactors (RBC) with synthetic wastewater were used as test materials. Experimental results showed that an increase of substrate loading rate (i.e., organic carbon and NH4-N) resulted in the microbial stratification in the biofilms. Heterotrophs defeated nitrifiers and dominated in the outer biofilm, whereas nitrifiers were diluted out in the outer biofilm and forced into the inner biofilm. At higher organic loading rates, a stronger stratified microbial spatial distribution was observed, which imposed a severe internal oxygen diffusion limitation on nitrifiers and resulted in the deterioration of nitrification efficiency. Model simulations described a general trend of the stratified biofilm structure. However, the actual stratification was stronger than the simulated results. For implication in the reactor design, when the specific carbon loading rate exceeds a certain limit, nitrification will be deteriorated or require a long start-up period due to the interspecies competition resulting in oxygen diffusion limitation. The extend of microbial stratification in the biofilm is especially important for determination of feasibility of nitrification in the presence of organic matters.


Sign in / Sign up

Export Citation Format

Share Document