Durability of a lightweight construction material made with dune sand and expanded polystyrene

2019 ◽  
Vol 33 (19) ◽  
pp. 2157-2179
Author(s):  
H. Laoubi ◽  
A. Djoudi ◽  
R. M. Dheilly ◽  
M. Bederina ◽  
A. Goullieux ◽  
...  
2018 ◽  
Vol 12 (1) ◽  
pp. 401-412 ◽  
Author(s):  
Hamza Laoubi ◽  
Madani Bederina ◽  
Amina Djoudi ◽  
Adeline Goullieux ◽  
Rose Marie Dheilly ◽  
...  

Introduction:This study aims to highlight the physicomechanical properties of a new lightweight construction material which is composed of plaster as a binder and dune sand and Expanded Polystyrene Beads (EPS) as aggregates.Methods:For this purpose, different mixtures were designed with different percentages and particle sizes of EPS aggregates in order to test the porosity, the density and the thermo-mechanical properties of the studied composite. Furthermore, Electron Microscopy (EM) visualisation and SEM analysis were used for the study of the structure and the interface “paste-aggregates”.Results and Conclusion:The obtained results showed that the progressive incorporation of an increasing percentage of PSE decreases the density of the plaster composite and consequently improves its thermal properties. As expected, the mechanical strength decreases with the increase of the EPS content, but relatively good mechanical strength can be obtained with low quantities of EPS. Concerning the material structure, it should be noted that the composite appears more or less homogeneous and the EPS beads adhere well to the plaster matrix.


2013 ◽  
Vol 594-595 ◽  
pp. 503-510
Author(s):  
T.I.T. Noor Hasanah ◽  
D.C. Wijeyesekera ◽  
Ismail bin Bakar ◽  
Wahab Saidin

Applications of lightweight construction materials enable the design and construction in challenging, difficult and demanding scenarios. Construction materials with enhanced stiffness as in sandwich panels, large portable structures and floating foundations are examples of such materials. The advent of cellular structure technology has actively introduced innovation and enabled design and construction, meeting engineering requirements such as in the construction of the body of air crafts. Cellular mat structures present in the minimum, triple benefits in being lightweight, load sharing and minimising non-uniform deformation. This paper further explores the use of recycled plastic waste as the base material for an innovative geomaterial. The combination of cellular structure, mat structure and use of recycled waste material is a desirable development in manufacturing. Paper also outlines the techno social benefit of adopting such material in construction. Other application-specific benefits related to cellular mats are those like noise reduction, energy absorption, thermal insulation, mechanical damping. This paper specifically presents the development of a new multifunctional lightweight material is been proposed as an invective innovation for highway construction on challenging ground condition.


2018 ◽  
Vol 108 (10) ◽  
pp. 639-645
Author(s):  
P. Groche ◽  
J. Günzel ◽  
T. Suckow

Zur Ausnutzung der hohen spezifischen Festigkeit und folglich Eignung als Leichtbauwerkstoff von EN AW-7075 bedarf es neben den Umform- auch Wärmebehandlungsprozessen, die im Folgenden in den Umformprozess integriert werden und die Prozesskette somit deutlich kürzer und effizienter gestalten. Dieser Fachbeitrag zeigt, welches Produktivitäts- und Leichtbaupotenzial durch eine Inline-Wärmebehandlung erschlossen werden kann.   To be able to exploit the high specific strength and thus suitability of EN AW-7075 as a lightweight construction material, it requires not only forming but also heat treatment processes. The latter become integrated into the forming process and thus make the process chain significantly shorter and more efficient. This paper points out the potential for productivity and lightweight construction to be tapped by inline heat treatment.


2020 ◽  
Vol 10 (19) ◽  
pp. 6697
Author(s):  
Antonio Licciulli ◽  
Ehsan Ul Haq ◽  
Muhammad Suhaib Ashraf ◽  
Khurram Rashid ◽  
Sanosh Kunjalukkal Padmanabhan

In this research work, thermal foaming of bottom ash and sodium silicate geopolymer is proposed as a production process for light weight bricks. The composition and temperatures were studied and optimized to get the most suitable intumescence properties for the lightweight construction applications. For this purpose, four different compositions (i.e., 10%, 20%, 30%, and 40% bottom ash (BA)) were cured at four different curing temperatures (CT) (i.e., 200, 400, 500, and 600 °C). Sodium silicate (SS) to sodium hydroxide (SH) ratio was kept constant in order to keep the activation capacity of the solution constant in all the samples so that the effect of composition and CT could be studied effectively. All samples were characterized by bulk density, foamability, compression test, XRD, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), water absorption index (WAI), and weight loss index (WLI). These characterizations finally led to the optimized parameters to get the most appropriate intumescence properties. It was found that bottom ash and sodium silicate geopolymer foams have good potential to produce lightweight aerated blocks.


Author(s):  
Ghulam Qadir ◽  
Yasir Rashid ◽  
Ahmad Hassan ◽  
Esmaou Mahmoud Vall ◽  
Shamsa Saleh ◽  
...  

In this study, a novel porous geopolymer mortar (GP) was produced and tested experimentally. Industrial waste materials/by-products were used as constituents of the GP, along with dune sand. One sample was produced as a control sample for benchmarking. For the rest of the samples, 15%, 30%, and 45% by volume, the solid constituents were replaced with expanded polystyrene foam (EPS) beads. These mortar samples were heat cured to depolymerize the EPS to cause porosity inside the samples. Indoor experiments were conducted to evaluate the response of produced porous GP to high heat flux. The porous samples were able to reduce heat transmission across the opposite surfaces. Induced porosity resulted in a decrement in compressive strength from 77.2 MPa for the control sample to 15.8 MPa for 45% porous sample. However, the limit lies within the standards for partitioning walls in buildings and pavements in urban areas to absorb rainwater.


Author(s):  
Talal S Amhadi ◽  
Gabriel J Assaf

Abstract For highway construction or any superstructure, on dune sand, designers and construction teams must ensure that the foundation soil is stable enough to provide support for the applied loads. Sand dunes are stretched across Libyan deserts that make road construction a challenge because of the poor soil base. Replacement of such a weak soil is very expensive and not economically feasible, and, in many cases, there is no alternative soil nearby. This study used two different mix designs aimed at stabilizing the existing base course using a mix of dune sand and manufactured sand with a small percentage of Portland cement. Compaction, unconfined compressive strength and California bearing ratio tests were conducted on the treated sample with a varying cement proportion of 0%, 3%, 5% and 7% by weight. The first tests were done with a mix of 50% dune sand and 50% crushed sand that is shown to have excellent results. For a more economic design, this study also included testing of another mix design with 70% dune sand and 30% crushed sand; laboratory results show this 70%/30% mixture was appropriate to use as a base-treated material for road construction material. This mix resulted in overall superior performance. Its use will reduce the cost of road construction by saving materials and time, and it will also have lower environmental impacts in desert areas. This study has shown that the stabilization of weak material (desert sand) by using cement improves the strength characteristics of the treated soil.


2019 ◽  
Vol 29 (3) ◽  
pp. 164-173
Author(s):  
Arunraj Ebanesar ◽  
Daniel Cruze ◽  
Ehsan Noroozinejad Farsangi ◽  
Vincent Sam Jebadurai Seenivasan ◽  
Adil Dar Mohammad ◽  
...  

Abstract This paper presents a novel buckling-restrained brace (BRB) where the inner core is restrained by a concrete infilled Expanded Polystyrene Sheet (EPS) instead of the conventional concrete infilled tube section, to resist inner core buckling. It serves two purposes, firstly, the EPS is a ductile material, which is favourable in terms of seismic performance and, secondly, the outer construction material has better corrosion resistance. Thus, the life of the steel core can be prolonged. In this study, 6 BRB specimens were prepared, of which 3 BRB specimens were infilled with concrete and the remaining 3 BRB specimens with concrete and EPSs, in order to study their performance under cyclic loading. Three different core heights, all with the same core thickness, were adopted. The test results indicate that the load-carrying capacity of this novel BRB is higher than the conventional BRB. Further, the length of the steel tube also affects the strength of the seismic disaster mitigation system. Lastly, a numerical study on a single bay RC frame, with and without BRB subjected to time history analysis, was conducted to check the global performance of this novel system. It was found that the structural responses had substantially decreased.


Sign in / Sign up

Export Citation Format

Share Document