Dysregulated translational factors and epigenetic regulations orchestrate in B cells contributing to autoimmune diseases

Author(s):  
Ming Yang ◽  
Ping Yi ◽  
Jiao Jiang ◽  
Ming Zhao ◽  
Haijing Wu ◽  
...  
2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 4-5
Author(s):  
A. Aue ◽  
F. Szelinski ◽  
S. Weißenberg ◽  
A. Wiedemann ◽  
T. Rose ◽  
...  

Background:Systemic lupus erythematosus (SLE) is characterized by two pathogenic key signatures, type I interferon (IFN) (1.) and B-cell abnormalities (2.). How these signatures are interrelated is not known. Type I-II IFN trigger activation of Janus kinase (JAK) – signal transducer and activator of transcription (STAT).Objectives:JAK-STAT inhibition is an attractive therapeutic possibility for SLE (3.). We assess STAT1 and STAT3 expression and phosphorylation at baseline and after IFN type I and II stimulation in B-cell subpopulations of SLE patients compared to other autoimmune diseases and healthy controls (HD) and related it to disease activity.Methods:Expression of STAT1, pSTAT1, STAT3 and pSTAT3 in B and T-cells of 21 HD, 10 rheumatoid arthritis (RA), 7 primary Sjögren’s (pSS) and 22 SLE patients was analyzed by flow cytometry. STAT1 and STAT3 expression and phosphorylation in PBMCs of SLE patients and HD after IFNα and IFNγ incubation were further investigated.Results:SLE patients showed substantially higher STAT1 but not pSTAT1 in B and T-cell subsets. Increased STAT1 expression in B cell subsets correlated significantly with SLEDAI and Siglec-1 on monocytes, a type I IFN marker (4.). STAT1 activation in plasmablasts was IFNα dependent while monocytes exhibited dependence on IFNγ.Figure 1.Significantly increased expression of STAT1 by SLE B cells(A) Representative histograms of baseline expression of STAT1, pSTAT1, STAT3 and pSTAT3 in CD19+ B cells of SLE patients (orange), HD (black) and isotype controls (grey). (B) Baseline expression of STAT1 and pSTAT1 or (C) STAT3 and pSTAT3 in CD20+CD27-, CD20+CD27+ and CD20lowCD27high B-lineage cells from SLE (orange) patients compared to those from HD (black). Mann Whitney test; ****p≤0.0001.Figure 2.Correlation of STAT1 expression by SLE B cells correlates with type I IFN signature (Siglec-1, CD169) and clinical activity (SLEDAI).Correlation of STAT1 expression in CD20+CD27- näive (p<0.0001, r=0.8766), CD20+CD27+ memory (p<0.0001, r=0.8556) and CD20lowCD27high (p<0.0001, r=0.9396) B cells from SLE patients with (A) Siglec-1 (CD169) expression on CD14+ cells as parameter of type I IFN signature and (B) lupus disease activity (SLEDAI score). Spearman rank coefficient (r) was calculated to identify correlations between these parameters. *p≤0.05, **p≤0.01. (C) STAT1 expression in B cell subsets of a previously undiagnosed, active SLE patient who was subsequently treated with two dosages of prednisolone and reanalyzed.Conclusion:Enhanced expression of STAT1 by B-cells candidates as key node of two immunopathogenic signatures (type I IFN and B-cells) related to important immunopathogenic pathways and lupus activity. We show that STAT1 is activated upon IFNα exposure in SLE plasmablasts. Thus, Jak inhibitors, targeting JAK-STAT pathways, hold promise to block STAT1 expression and control plasmablast induction in SLE.References:[1]Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610-5.[2]Lino AC, Dorner T, Bar-Or A, Fillatreau S. Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol Rev. 2016;269(1):130-44.[3]Dorner T, Lipsky PE. Beyond pan-B-cell-directed therapy - new avenues and insights into the pathogenesis of SLE. Nat Rev Rheumatol. 2016;12(11):645-57.[4]Biesen R, Demir C, Barkhudarova F, Grun JR, Steinbrich-Zollner M, Backhaus M, et al. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. Arthritis Rheum. 2008;58(4):1136-45.Disclosure of Interests:Arman Aue: None declared, Franziska Szelinski: None declared, Sarah Weißenberg: None declared, Annika Wiedemann: None declared, Thomas Rose: None declared, Andreia Lino: None declared, Thomas Dörner Grant/research support from: Janssen, Novartis, Roche, UCB, Consultant of: Abbvie, Celgene, Eli Lilly, Roche, Janssen, EMD, Speakers bureau: Eli Lilly, Roche, Samsung, Janssen


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1321.1-1321
Author(s):  
S. Nagpal ◽  
S. Cole ◽  
A. Floudas ◽  
M. Wechalekar ◽  
Q. Song ◽  
...  

Background:Immune checkpoint blockade with agents targeting CTLA4 and PD-1/PD-L1 alone or in combination has demonstrated exceptional efficacy in multiple cancer types by “unleashing” the cytotoxic action of quiescent, tumor-infiltrating T cells. However, the therapeutic action of these immunotherapies goes hand in hand with the loss of immune tolerance and appearance of immune-related adverse events such as colitis, arthralgia and inflammatory arthritis in responsive patients. Therefore, immune checkpoint molecules have been proposed as targets for the treatment of autoimmune diseases.Objectives:Herein, we interrogate the potential of BTLA/HVEM axis as a target for restoring immune homeostasis in rheumatoid arthritis (RA), Systemic Lupus Erythematosus (SLE) and Sjogren’s Syndrome (SjS) by examining their expression patterns in autoimmune disease tissues.Methods:Message and protein expression of BTLA and HVEM were examined in RA and SLE synovial tissues, SLE cutaneous lesions, SjS salivary glands and peripheral blood samples of autoimmune disease by RNA sequencing and flow cytometry.Results:Tissue dysregulation of the BTLA-HVEM axis was observed: Increased BTLA RNA level in RA synovium, SLE-affected skin, and SjS salivary gland samples, whereas HVEM level was affected only in the RA synovium when compared to unaffected tissues. Detailed immunophenotyping of B, T, and myeloid cell populations in RA, SLE, SjS and healthy control PBMCs revealed differential modulation of the BTLA+ or HVEM+ immune cell subsets in a disease-context dependent manner. SjS patients showed an overall decrease in memory B cells and most of the BTLA+ B cell subsets while a decrease in HVEM+ B cells was observed only in SLE PBMC samples and not RA and SLE samples. Immunophenotyping with a T cell panel exhibited decreased BTLA and HVEM expression on T cell subsets in SjS and SLE but not in RA patients. In addition, protein levels of HVEM were differentially decreased in SLE myeloid cell subsets. Finally, we demonstrate tissue-specific surface expression patterns of BTLA in RA and SLE samples: higher surface BTLA levels on RA and SLE PBMC B cells than matched tissue-derived B cells.Conclusion:Our results demonstrate a dysregulation of the BTLA/HVEM axis in either lesional tissue or peripheral blood in an autoimmune disease context-dependent manner. These results also indicate the potential of targeting BTLA-HVEM axis for the treatment of multiple autoimmune diseases.Disclosure of Interests:Sunil Nagpal Shareholder of: Janssen Pharmaceuticals, Employee of: Janssen Pharmaceuticals, Suzanne Cole Shareholder of: Janssen Research & Development employee, Employee of: Janssen Research & Development employee, Achilleas Floudas: None declared, Mihir Wechalekar Grant/research support from: Grant from Janssen Research & Development, Qingxuan Song Shareholder of: Employee of Janssen Research, Employee of: Employee of Janssen Research, Tom Gordon: None declared, Roberto Caricchio Grant/research support from: Financial grant from Janssen Research & Development, Douglas Veale: None declared, Ursula Fearon: None declared, Navin Rao Shareholder of: Janssen Pharmaceuticals, Employee of: Janssen Pharmaceuticals, Ling-Yang Hao Shareholder of: Employee of Janssen Research, Employee of: Employee of Janssen Research


2021 ◽  
Vol 12 ◽  
Author(s):  
Iwan G. A. Raza ◽  
Alexander J. Clarke

B cells are central to the pathogenesis of multiple autoimmune diseases, through antigen presentation, cytokine secretion, and the production of autoantibodies. During development and differentiation, B cells undergo drastic changes in their physiology. It is emerging that these are accompanied by equally significant shifts in metabolic phenotype, which may themselves also drive and enforce the functional properties of the cell. The dysfunction of B cells during autoimmunity is characterised by the breaching of tolerogenic checkpoints, and there is developing evidence that the metabolic state of B cells may contribute to this. Determining the metabolic phenotype of B cells in autoimmunity is an area of active study, and is important because intervention by metabolism-altering therapeutic approaches may represent an attractive treatment target.


Author(s):  
ML Velloso Feijoo ◽  
S Rodriguez Montero ◽  
N Plaza Aulestia ◽  
JL Marenco de la Fuente

Inflammation ◽  
2020 ◽  
Author(s):  
Xianzheng Zhang ◽  
Dan Mei ◽  
Lingling Zhang ◽  
Wei Wei

2019 ◽  
Vol 47 (5) ◽  
pp. 457-466 ◽  
Author(s):  
G. López-Herrera ◽  
N.H. Segura-Méndez ◽  
P. O’Farril-Romanillos ◽  
M.E. Nuñez-Nuñez ◽  
M.C. Zarate-Hernández ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Favour O. Oladipupo ◽  
Cheng-Rong Yu ◽  
Ezekiel Olumuyide ◽  
Yingyos Jittaysothorn ◽  
Jin Kyeong Choi ◽  
...  

Abstract STAT3 transcription factor induces differentiation of naïve T cells into Th17 cells and loss of STAT3 in T cell prevents development of CNS autoimmune diseases. However, function of STAT3 in the B lymphocyte subset is not well understood. In this study, we have generated mice lacking STAT3 in CD19+ B cells (CD19-STAT3KO) and investigated intrinsic and extrinsic functions of STAT3 in B cells and its potential role in resistance or pathogenesis of organ-specific autoimmune diseases. We show that STAT3 regulates metabolic mechanisms in B cells with implications for bioenergetic and metabolic pathways that control cellular homeostasis in B cells. Thus, loss of STAT3 in CD19-STAT3KO cells perturbed growth and apoptosis by inducing rapid entry of B cells into the S-phase of the cell cycle, decreasing expression of cyclin-dependent kinase inhibitors and upregulating pro-apoptotic proteins. We further show that the CD19-STAT3KO mice develop severe experimental autoimmune uveitis (EAU), an animal model of human uveitis. Exacerbated uveitis in CD19-STAT3KO mice derived in part from enhanced expression of costimulatory molecules on B cells, marked increase of Th17 responses and increased recruitment of granulocytes into the neuroretina. The enhanced autoimmunity upon deletion of STAT3 in B cells is also recapitulated in experimental autoimmune encephalitis, a mouse model of multiple sclerosis and thus support our conclusion that STAT3 deletion in B cells enhanced inflammation and the effects observed are not model specific. Our data further indicate that STAT3 pathway modulates interactions between B and T cells during EAU resulting in alteration of lymphocyte repertoire by increasing levels of autoreactive pathogenic T cells while suppressing development and/or expansion of immune-suppressive lymphocytes (Bregs and Tregs). Taken together, STAT3 exerts diametrically opposite effects in lymphocytes, with loss of STAT3 in B cells exacerbating uveitis whereas Stat3 deletion in T cells confers protection.


2019 ◽  
Vol 20 (13) ◽  
pp. 3234
Author(s):  
Alexandra Eichhorst ◽  
Christoph Daniel ◽  
Rita Rzepka ◽  
Bettina Sehnert ◽  
Falk Nimmerjahn ◽  
...  

It is incompletely understood how self-antigens become targets of humoral immunity in antibody-mediated autoimmune diseases. In this context, alarmins are discussed as an important level of regulation. Alarmins are recognized by various receptors, such as receptor for advanced glycation end products (RAGE). As RAGE is upregulated under inflammatory conditions, strongly binds nucleic acids and mediates pro-inflammatory responses upon alarmin recognition, our aim was to examine its contribution to immune complex-mediated autoimmune diseases. This question was addressed employing RAGE−/− animals in murine models of pristane-induced lupus, collagen-induced, and serum-transfer arthritis. Autoantibodies were assessed by enzyme-linked immunosorbent assay, renal disease by quantification of proteinuria and histology, arthritis by scoring joint inflammation. The associated immune status was determined by flow cytometry. In both disease entities, we detected tendentiously decreased autoantibody levels in RAGE−/− mice, however no differences in clinical outcome. In accordance with autoantibody levels, a subgroup of the RAGE−/− animals showed a decrease in plasma cells, and germinal center B cells and an increase in follicular B cells. Based on our results, we suggest that RAGE deficiency alone does not significantly affect antibody-mediated autoimmunity. RAGE may rather exert its effects along with other receptors linking environmental factors to auto-reactive immune responses.


Sign in / Sign up

Export Citation Format

Share Document