Alignment and strengthening effect of β′ precipitates in Mg-Gd-Y-Zr during ageing process studied by HAADF-STEM and GPA

Author(s):  
Chenyang Zhu ◽  
Jingxu Zheng ◽  
Xiaoqin Zeng ◽  
Bin Chen
Author(s):  
M.S. Grewal ◽  
S.A. Sastri ◽  
N.J. Grant

Currently there is a great interest in developing nickel base alloys with fine and uniform dispersion of stable oxide particles, for high temperature applications. It is well known that the high temperature strength and stability of an oxide dispersed alloy can be greatly improved by appropriate thermomechanical processing, but the mechanism of this strengthening effect is not well understood. This investigation was undertaken to study the dislocation substructures formed in beryllia dispersed nickel alloys as a function of cold work both with and without intermediate anneals. Two alloys, one Ni-lv/oBeo and other Ni-4.5Mo-30Co-2v/oBeo were investigated. The influence of the substructures produced by Thermo-Mechanical Processing (TMP) on the high temperature creep properties of these alloys was also evaluated.


Author(s):  
E. R. Kimmel ◽  
H. L. Anthony ◽  
W. Scheithauer

The strengthening effect at high temperature produced by a dispersed oxide phase in a metal matrix is seemingly dependent on at least two major contributors: oxide particle size and spatial distribution, and stability of the worked microstructure. These two are strongly interrelated. The stability of the microstructure is produced by polygonization of the worked structure forming low angle cell boundaries which become anchored by the dispersed oxide particles. The effect of the particles on strength is therefore twofold, in that they stabilize the worked microstructure and also hinder dislocation motion during loading.


Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1148 ◽  
Author(s):  
Roman Husák ◽  
Hynek Hadraba ◽  
Zdeněk Chlup ◽  
Milan Heczko ◽  
Tomáš Kruml ◽  
...  

Oxide dispersion-strengthened (ODS) materials contain homogeneous dispersions of temperature-stable nano-oxides serving as obstacles for dislocations and further pinning of grain boundaries. The strategy for dispersion strengthening based on complex oxides (Y-Hf, -Zr, -Ce, -La) was developed in order to refine oxide dispersion to enhance the dispersion strengthening effect. In this work, the strengthening of EUROFER steel by complex oxides based on Y and elements of the IIIB group (lanthanum, scandium) and IVB group (cerium, hafnium, zirconium) was explored. Interparticle spacing as a dispersoid characteristic appeared to be an important factor in controlling the dispersion strengthening contribution to the yield strength of ODS EUROFER steels. The dispersoid size and average grain size of ODS EUROFER steel were altered in the ranges of 5–13 nm and 0.6–1.7 µm, respectively. Using this strategy, the yield strength of the prepared alloys varied between 550 MPa and 950 MPa depending on the doping element.


Beverages ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 12 ◽  
Author(s):  
Rosa Perestrelo ◽  
Catarina Silva ◽  
Carolina Gonçalves ◽  
Mariangie Castillo ◽  
José S. Câmara

Madeira wine is a fortified Portuguese wine, which has a crucial impact on the Madeira Island economy. The particular properties of Madeira wine result from the unique and specific winemaking and ageing processes that promote the occurrence of chemical reactions among acids, sugars, alcohols, and polyphenols, which are important to the extraordinary quality of the wine. These chemical reactions contribute to the appearance of novel compounds and/or the transformation of others, consequently promoting changes in qualitative and quantitative volatile and non-volatile composition. The current review comprises an overview of Madeira wines related to volatile (e.g., terpenes, norisoprenoids, alcohols, esters, fatty acids) and non-volatile composition (e.g., polyphenols, organic acids, amino acids, biogenic amines, and metals). Moreover, types of aroma compounds, the contribution of volatile organic compounds (VOCs) to the overall Madeira wine aroma, the change of their content during the ageing process, as well as the establishment of the potential ageing markers will also be reviewed. The viability of several analytical methods (e.g., gas chromatography-mass spectrometry (GC-MS), two-dimensional gas chromatography and time-of-flight mass spectrometry (GC×GC-ToFMS)) combined with chemometrics tools (e.g., partial least squares regression (PLS-R), partial least squares discriminant analysis (PLS-DA) was investigated to establish potential ageing markers to guarantee the Madeira wine authenticity. Acetals, furanic compounds, and lactones are the chemical families most commonly related with the ageing process.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4007
Author(s):  
Qimeng Zhang ◽  
Bo Cui ◽  
Bin Sun ◽  
Xin Zhang ◽  
Zhizhong Dong ◽  
...  

The effects of rare earth element Sm on the microstructure, mechanical properties, and shape memory effect of the high temperature shape memory alloy, Cu-13.0Al-4.0Ni-xSm (x = 0, 0.2 and 0.5) (wt.%), are studied in this work. The results show that the Sm addition reduces the grain size of the Cu-13.0Al-4.0Ni alloy from millimeters to hundreds of microns. The microstructure of the Cu-13.0Al-4.0Ni-xSm alloys are composed of 18R and a face-centered cubic Sm-rich phase at room temperature. In addition, because the addition of the Sm element enhances the fine-grain strengthening effect, the mechanical properties and the shape memory effect of the Cu-13.0Al-4.0Ni alloy were greatly improved. When x = 0.5, the compressive fracture stress and the compressive fracture strain increased from 580 MPa, 10.5% to 1021 MPa, 14.8%, respectively. When the pre-strain is 10%, a reversible strain of 6.3% can be obtained for the Cu-13.0Al-4.0Ni-0.2Sm alloy.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2821
Author(s):  
Jacob Wittrup Schmidt ◽  
Christian Overgaard Christensen ◽  
Per Goltermann ◽  
José Sena-Cruz

Significant strengthening of concrete structures can be obtained when using adhesively-bonded carbon fiber-reinforced polymer (CFRP) systems. Challenges related to such strengthening methods are; however, the brittle concrete delamination failure, reduced warning, and the consequent inefficient use of the CFRP. A novel ductile near-surface mounted reinforcement (NSMR) CFRP strengthening system with a high CFRP utilization is introduced in this paper. It is hypothesized that the tailored ductile enclosure wedge (EW) end anchors, in combination with low E-modulus and high elongation adhesive, can provide significant strengthening and ductility control. Five concrete T-beams were strengthened using the novel system with a CFRP rod activation stress of approximately 980 MPa. The beam responses were compared to identical epoxy-bonded NSMR strengthened and un-strengthened beams. The linear elastic response was identical to the epoxy-bonded NSMR strengthened beam. In addition, the average deflection and yielding regimes were improved by 220% and 300% (average values), respectively, with an ultimate capacity comparable to the epoxy-bonded NSMR strengthened beam. Reproducible and predictable strengthening effect seems obtainable, where a good correlation between the results and applied theory was reached. The brittle failure modes were prevented, where concrete compression failure and frontal overload anchor failure were experienced when failure was initiated.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 887
Author(s):  
Chunhua Feng ◽  
Buwen Cui ◽  
Haidong Ge ◽  
Yihong Huang ◽  
Wenyan Zhang ◽  
...  

Recycled aggregate is aggregate prepared from construction waste. With the development of a global economy and people’s attention to sustainable development, recycled aggregate has shown advantages in replacing natural aggregate in the production of concrete due to its environmental friendliness, low energy consumption, and low cost. Recycled aggregate exhibits high water absorption and a multi-interface transition zone, which limits its application scope. Researchers have used various methods to improve the properties of recycled aggregate, such as microbially induced calcium carbonate precipitation (MICP) technology. In this paper, the results of recent studies on the reinforcement of recycled aggregate by MICP technology are synthesized, and the factors affecting the strengthening effect of recycled aggregate are reviewed. Moreover, the strengthening mechanism, advantages and disadvantages of MICP technology are summarized. After the modified treatment, the aggregate performance is significantly improved. Regardless of whether the aggregate was used in mortar or concrete, the mechanical properties of the specimens were clearly improved. However, there are some issues regarding the application of MICP technology, such as the use of an expensive culture medium, a long modification cycle, and untargeted mineralization deposition. These difficulties need to be overcome in the future for the industrialization of regenerated aggregate materials via MICP technology.


Sign in / Sign up

Export Citation Format

Share Document